• Title/Summary/Keyword: Adipogenic Differentiation

Search Result 273, Processing Time 0.025 seconds

A Number of Bone Marrow Mesenchymal Stem Cells but Neither Phenotype Nor Differentiation Capacities Changes with Age of Rats

  • Tokalov, Sergey V.;Gruner, Susanne;Schindler, Sebastian;Iagunov, Alexey S.;Baumann, Michael;Abolmaali, Nasreddin D.
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.255-260
    • /
    • 2007
  • Bone marrow (BM) derived mesenchymal stem cells (MSC) are pluripotent cells which can differentiate into osteogenic, adipogenic and other lineages. In spite of the broad interest, the information about the changes in BM cell composition, in particularly about the variation of MSC number and their properties in relation to the age of the donor is still controversial. The aim of this study was to investigate the age associated changes in variations of BM cell composition, phenotype and differentiation capacities of MSC using a rat model. Cell populations were characterized by flow cytometry using light scattering parameters, DNA content and a set of monoclonal antibodies. Single cell analysis was performed by conventional fluorescent microscopy. In vitro culture of MSC was established and their phenotype and capability for in vitro differentiation into osteogenic and adipogenic cells was shown. Age related changes in tibiae and femurs, amount of BM tissue, BM cell composition, proportions of separated MSC and yield of MSC in 2 weeks of in vitro culture were found. At the same time, neither change in phenotype no in differentiation capacities of MSC was registered. Age-related changes of the number of MSC should be taken into account whenever MSC are intended to be used for investigations.

Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

  • Lee, Jeung-Eun;Kim, Jung-Min;Jang, Hyun-Jun;Lim, Se-Young;Choi, Seon-Jeong;Lee, Nan-Hee;Suh, Pann-Ghill;Choi, Ung-Kyu
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.336-342
    • /
    • 2015
  • Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$), CCAAT enhancer binding protein-${\alpha}$ (C/EBP-${\alpha}$), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

Limonium Tetragonum Enhances Osteoblastogenesis while Suppressing the Adipocyte Differentiation

  • Kim, Jung-Ae;Ahn, Byul-Nim;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Halophytes are plants that live in harsh environments in coastal regions and are known for their diverse chemical compositions. Limonium tetragonum, a halophyte endemic to Korean shores, is known for its bioactive compounds and is utilized in folk medicine. In this study L. tetragonum extract (LHE) was used to determine and evaluate its anti-osteoporotic properties. Pre-adipocyte and pre-osteoblasts were induced to differentiate along with LHE treatment, and their differentiation was evaluated using differentiation markers. LHE treatment decreased lipid accumulation in 3T3-L1 preadipocytes during adipogenesis. Results indicated that the LHE treatment also decreased the levels of key adipogenic transcription factors: PPARγ, SREBP1c, and C/EBPα. Enhancing osteoblastogenesis by LHE treatment was confirmed in osteoblastogenesis-induced MC3T3-E1 pre-osteoblasts. Cells treated with LHE resulted in increased calcification and alkaline phosphatase (ALP) activity compared with osteoblasts without LHE treatment. Pro-osteogenic and anti-adipogenic effects were also confirmed in D1 murine mesenchymal stromal cells which are capable of differentiation into both adipocytes and osteoblasts. LHE hindered adipogenesis and enhanced osteoblastogenesis in D1 MSCs in a similar fashion. In conclusion, L. tetragonum is believed to possess the potential to be utilized as a nutraceutical ingredient against osteoporotic conditions.

Effects of Fermented Lotus Extracts on Glucose Intolerance and Lipid Metabolism-related Gene Expression (연잎-연근 복합 발효물이 흰쥐의 내당능 및 지질대사 관련 유전자 발현에 미치는 영향)

  • Kim, Hyung-Gu;Bose, Shambhunath;Kim, Dong-Il;Koo, Byung-Soo;Kim, Hojun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Objectives This study was performed to evaluate the effects of fermented lotus extracts on prediabetes and hyperlipidemia in high fructose diet rats. Methods Extracts of lotus leaf and lotus root were fermented using 4 different probiotics separately, including Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium breve, and Bifidobacterium longum. Expressions of adipogenic transcription factors including Adiponectin, GLUT-4, Leptin, PPAR gamma, Resistin and Visfatin were analyzed by Real time PCR and Western blotting analysis. Results Fermented lotus extracts reduced blood glucose. Fermented lotus extracts inhibited adipogenic transcription factors by inhibiting preadipocytes differentiation. The level of gene expression of Adiponectin, GLUT-4, Leptin, PPAR gamma, Resistin and Visfatin in relation to that of GAPDH were increase or decrease significantly with the Fermented lotus formulation group. Conclusions Fermented lotus extracts showed hypoglycemic and hypolipidemic effects by inhibiting preadipocyte differentiation and controlling insulin sensitivity in high fructose diet rats.

Anti-adipogenic Effect of Hydrolysate Silk Fibroin in 3T3-L1 Cells

  • Chon, Jeong-Woo;Lee, Kwang-Gill;Park, Yoo-Kyoung;Park, Kyung-Ho;Yeo, Joo-Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Hydrolysate silk fibroin (HSF) is a fibrous protein composed of parallel $\beta$-structures and is made from pure silk elements including 18 amino acids, with glycine, alanine, and serine comprising of over 80% of the amino acids. Numerous studies have documented a range of effects of HSF, including moisturizing, antioxidant activity, nervous system disorders, and many more. We investigated whether HSF has anti-obesity effects in vitro. The effects of HSF inhibition on lipid accumulation and acceleration of lipid degradation in 3T3-L1 cells were studied. Treatment of 3T3-L1 cells with HSF caused significant inhibition of cell viability, an increase in glycerol release, and a decreased in adipocyte differentiation. Moreover HSF stimulated downregulated of adipogenic enzyme expressions (PPAR${\gamma}$ and C/EBP${\alpha}$) and up-regulated of fatty oxidation enzyme expressions (CPT-1 and UCP-2). Based on these results, hydrolysate silk fibroin can be suggested as a potential therapeutic substance as part of a prevention or treatment strategy for obesity.

Genome-wide Expression Profiling of Piperine and Piper nigrum Linne (호초(胡椒)와 Piperine에 의한 총체적 유전자 발현 비교)

  • Jo, Eun-Young;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.831-836
    • /
    • 2010
  • In addition to spice, black pepper (Piper nigrum Linne : PnL) has been used as herbal medicine because of its function in anti-oxidation, anti-inflammation, and anti-carcinogenesis. Recently, it has been reported that piperine, a component of PnL, inhibits adipocyte differentiation by repressing various adipogenic gene expressions. In this study, we determined whether piperine is a major constituent of PnL that confers the anti-adipogenic activity at whole genome level. Differentiation of 3T3-L1 pre-adipocytes was induced in presence of PnL extract or piperine. To compare genes that are regulated by PnL extract or piperine, we performed expression profiling using microarrays (Agilent Mouse 44k 4plex). RNA samples were labeled with Cy3 and Cy5, respectively. Labeled samples were hybridized to the microarrays. Results were filtered and cut off set p<0.05. Genes exhibiting significant differences in expression level were classified into Gene Ontology (GO)-based functional categories (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg/). Extract of PnL and its component piperine reduced lipid accumulation in 3T3-L1 cells during adipogenesis. Such anti-adipogenic activity appears to result from down-regulation of transcription factor genes involved in adipogenesis, and other genes involved in fatty acid synthesis, transport, triglyceride synthesis, and carbohydrate metabolism. These genome-wide studies lead to conclude that piperine, as a critical component of PnL, plays common role with PnL in anti-adipogenesis.

Elephant Garlic Extracts Inhibit Adipogenesis in 3T3-L1 Adipocytes (코끼리마늘의 3T3-L1 지방세포 분화억제 효과)

  • Lee, Seul Gi;Hahn, Dongyup;Kim, Soo Rin;Lee, Won Young;Nam, Ju-Ock
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.383-388
    • /
    • 2020
  • Elephant garlic (Allium ampeloprasum L.) has been reported to have several pharmacological effects. However, its anti-adipogenic effect and the possible molecular mechanisms have not yet been reported. In this study, we demonstrate that elephant garlic extracts suppress adipogenesis in 3T3-L1 adipocytes. Raw and steamed elephant garlic extracts (REG and SEG, respectively) suppressed the differentiation of adipocytes and cellular lipid accumulation. Of note, the anti-differentiation effect of REG treatment on 3T3-L1 cells resulted in cytotoxicity, whereas SEG-treated cells displayed no such cytotoxicity. Additionally, SEG treatment significantly reduced the adipogenesis-related gene expression of PPAR γ, C/EBPα, adiponectin, Ap2, and LPL. To our knowledge, these results are the first evidence of the anti-adipogenic effects of elephant garlic extracts on 3T3-L1 adipocytes.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.