• Title/Summary/Keyword: Adiabatic effect

Search Result 184, Processing Time 0.033 seconds

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

NOx Formation Characteristics on Heat Loss Rate for CH4/Air Premixed Flames in a Perfectly Stirred Reactor (완전혼합 반응기에서 CH4/Air 예혼합화염의 열손실율에 따른 Nox 생성특성)

  • Hwang, Cheol-Hong;Lee, Kee-Man;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1465-1472
    • /
    • 2009
  • The effect of heat loss rate on NOx formation of $CH_4/air$premixed flame were examined numerically in a perfectly stirred reactor. The following conclusions were drawn. Under the adiabatic wall condition, an increase in the residence time causes a remarkable increases in NOx emission. Under the heat loss conditions, however, NOx decreases significantly as the heat transfer coefficient and residence time increase. As the heat loss rate increases, Thermal NO mechanism and Re-burning NO mechanism play an important role in the NOx reduction, but Prompt NO mechanism and $N_2O$-intermediate NO mechanism lead to the increase in NOx production. Although the NOx formation is actually related to complex NOx mechanism with the changes in the heat transfer coefficient and residence time, it was found that NOx concentration can be represented by independent Thermal NO mechanism. From these results, new NOx correlation combined with the heat loss rate and residence time was suggested for predicting the NOx concentration in a practical $CH_4/air$premixed combustor.

Oxidation Effect on the Critical Velocity of Pure Al Feedstock Deposition in the Kinetic Spraying Process (저온분사 공정에서 알루미늄 분말의 산화가 임계 적층 속도에 미치는 영향)

  • Kang, Ki-Cheol;Yoon, Sang-Hoon;Ji, Youl-Gwun;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • In kinetic spraying process, the critical velocity is an important criterion which determines the deposition of a feedstock particle onto the substrate. In other studies, it was experimentally and numerically proven that the critical velocity is determined by the physical and mechanical properties and the state of materials such as initial temperature, size and the extent of oxidation. Compared to un-oxidized feedstock, oxidized feedstock required a greater kinetic energy of in-flight particle to break away oxide film during impact. The oxide film formed on the surface of particle and substrate is of a relatively higher brittleness and hardness than those of general metals. Because of its physical characteristics, the oxide significantly affected the deposition behavior and critical velocity. In this study, in order to investigate the effects of oxidation on the deposition behavior and critical velocity of feedstock, oxygen contents of Al feedstock were artificially controlled, individual particle impact tests were carried out and the velocities of in-flight Al feedstock was measured for a wide range of process gas conditions. As a result, as the oxygen contents of Al feedstock increased, the critical velocity increased.

Parametric Sensitivity Analysis and Damage Estimation for BLEVE and Fireball (BLEVE와 Fireball의 매개변수 민감도분석 및 피해 산정)

  • Kim Hyung Seok;Kim In Tae;Song Kwang Ho;Ko Jae Wook;Kim In Won
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.25-36
    • /
    • 1998
  • Explosion and fires can occur in all segments of chemical and petroleum industries because of complexity of process, usage and storage of flammable and reactive chemicals, and operating conditions of high pressure and temperatures. Especially chemical plants have high possibility of the occurrence of BLEVE(Boiling Liquid Expanding Vapor Explosion)and Fireball. In this study, a computer program was developed for the effect assessment of BLEVE and Fireball. BLEVE was analysed by three explosion models of physical explosion model, isothermal expansion model and adiabatic expansion model and Fireball using solid model. The parametric sensitivity analysis has been done for the models of BLEVE and Fireball. The damage by BLEVE and Fireball of Benzene and Toluene and m-Xylene were estimated.

  • PDF

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

Magnetocaloric Effect of LaPbMnO3 Alloy (LaPbMnO3 합금의 자기열량효과)

  • Min, Seong-Gi;Kim, Kyeong-Sup;Yu, Seong-Cho;Moon, Young-Mo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.236-240
    • /
    • 2005
  • The magnetocaloric effect and magnetization behaviors have been studied for $La_{1-x}Pb_{x}MnO_3$ (x=0.1, 0.2, 0.3) alloys. The Curie temperature increased from 195 K to 352 K with increasing Pb concentration. A large magnetic entropy change (${\Delta}S_M$), which is calculated from H vs M curves associated with the ferromagnetic-paramagnetic transitions, has been observed. The maximum ${\Delta}S_M$ of $La_{0.8}Pb_{0.2}MnO_3$ was 1.22 J/kg K at 294 K for an applied field of 1.5 T. Adiabatic temperature change (${\Delta}T_ad$) was measured directly by a special cryostat. The maximum ${\Delta}T_ad$ of $La_{0.7}Pb_{0.3}MnO_3$ was 1.00 K at 352 K for an applied field of 2 T.

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag (상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향)

  • Nam, Yi-Hyun;Jang, Seok-Joon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

Possibility of Soil Solarization in Korea (한국(韓國)에 있어서 태양열(太陽熱)을 이용(利用)한 토양소독(土壤消毒)의 가능성(可能性))

  • Ki, Kye-Un;Kim, Ki-Chung
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.107-114
    • /
    • 1985
  • This experiment was performed to see the possibility if soil-borne disease in green house can be controlled by soil solarization in Korea. Thermal death profiles of propagules of some soil-borne fungi, Fusarium oxysporum f. lycopersici, Fusarium oxysporum f. niveum, Rhizoctonia salani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Pythium debaryanum, were obtained under the conditions in water-suspension and in soil. Except Pythium debaryanum, all the fungal units in water-suspension that were colonized on barley grains lost a viability within 7 days in water bath at $45^{\circ}C$. When the soil in test tubes in which barley grains infected with the fungi were also buried all the fungi tested including Pythium debaryanum were completely killed within 7 days in water bath at $45^{\circ}C$. From July to August in Korea, soil temperature at depth of 5cm and 15cm within tunnel in plastic house reached $38^{\circ}C\;to\;57^{\circ}C$ and $40^{\circ}C\;to\;47^{\circ}\C$, in 1982 and 1983 respectively. Even at 15cm depth, soil temperature were kept over $43^{\circ}C$ for 12 hours a day. Adiabatic material set under ground or under mulching with the transparent polyethylene-film on the soil surface had a boostering effect for higher soil-temperature and longer duration. Fungi buried in adiabatic block of the soil in plastic house were completely killed at 15cm depth 14 days after, and at 20cm depth 21 days after soil solarization. The exposure of the pathogens to fluctuating temperature was much more effective than to constant. From the above results, soil-borne diseases may be effectively controlled by soil solarization in the closed plastic house in hot summer season in Korea.

  • PDF

Effect of Pressure and Stoichiometric Air Ratio on NOx Emissions in Gas-Turbine Dump Combustor with Double Cone Burner (이중원추형 모형연소기에서 압력과 공기비에 따른 NOx 배출특성)

  • Nam, Dong-Hyun;Nam, Hyun-Su;Han, Dong-Sik;Kim, Gyu-Bo;Cho, Seung-Wan;Kim, Han-Suk;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • This work presents an experimental investigation of NOx emissions according to inlet air temperature (550-660 K), stoichiometric air ratio (${\lambda}$, 1.4-2.1), and elevated pressure (2-5 bar) in a High Press Combustor (HPC) equipped with a double cone burner, which was designed by Pusan Clean Coal Center (PC3). The exhaust-gas temperature and NOx emissions were measured at the end of the combustion chamber. The NOx emissions generally decreased as a function of increasing ${\lambda}$. On the other hand, NOx emissions were influenced by ${\lambda}$, inlet air temperature and pressure of the combustion chamber. In particular, when the inlet air temperature increased, the flammability limit was extended to leaner conditions. As a result, a higher adiabatic temperature and lower NOx emissions could be achieved under these operation conditions. The NOx emissions that were governed by thermal NOx were greatly increased under elevated pressures, and slightly increased at sufficiently low fuel concentrations (${\lambda}$ >1.8).

A Study on Char Characteristics of Fire Retardant Treated Douglas Fir (난연처리된 Douglas Fir의 탄화특성에 관한 연구)

  • Park Hyung-Ju;Oh Kyu-Hyung;Kim Eung-Sik;Kim Hong
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.105-110
    • /
    • 2005
  • We tested the char characteristics of fire retardant treated Douglas fir at each of five constant external irradiance levels $(10,\;15,\;20,\;25\;및\;35kW/m^2)$. A Cone heater was used to expose the wood specimens to the heat flux. The size of specimens is 100- by 100- by 50-mm and the kinds of specimens are non-treated wood(N) and treated wood(F2 and f4) by water soluble fire retardants. The water-soluble fire retardants were made from mixture of aqueous solutions of monoammonium phosphate, sodium borate and zinc borate, and those are used for immersion of Douglas fir. In result of test, char fraction of fire retardant treated Douglas fir showed a considerably low char fraction than it of non-treated wood irrespective of increase of external heat flux. And char fractions has low levels with increase of fire retardant content. Burning rate of non-treated wood(N) was showed a relatively high burning rate than it of fire retardant treated wood(F2 and F4). And difference of burning rate shown more rapidly in high external irradiance than low external irradiance. When the external heat flux is $35kW/m^2$, average char rate of non-treated wood is rapidly about twice than fire retardant treated wood. Water-soluble fire retardants mixed in this study find out it has fire suppression and adiabatic effect by char layer from results of char fraction, burning rate, and char depth and rate.