• Title/Summary/Keyword: Adhesive disc

Search Result 40, Processing Time 0.022 seconds

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

Design and Analysis of Eddy-Current Braker for High-Speed Train (고속전철 와전류 제동장치 설계와 특성해석 및 실험)

  • 정수진;강도현;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.659-663
    • /
    • 2002
  • The brake systems of high-speed train are to be equipped with three different brake systems, such as regenerative brake with regenerative feedback in driving car, a pneumatic disc brake, and non-contact linear eddy-current brake(ECB). The regenerative brake and the pneumatic disc brake are acting on the wheels. Their achievable braking force depends on the adhesive coefficient, which is influenced by the weather condition and speed, between the wheel and The linear eddy current brake gets an economical solution in the high-speed train because of the independence of the adhesive coefficient, no maintenance needed. and the good control characteristics. The braking force and the normal force of ECB for korean high-speed train are analysed by the 2D FEM(Finite Element Method). Finally the normal force is compared with the experiential values to verify the analysis.

A Scanning electron microscopic study of enamel surface by debracketing of ceramic bracket (도재브라켓의 제거방법에 따른 법랑질표면의 주사전자현미경학적 관찰)

  • Park, Mi-Suk;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.613-622
    • /
    • 1996
  • The purposes of this study were to evaluate and compare the frequency of ceramic bracket fracture, frequency of enamel fracture, bond fracture site, adhesive remnant index after mechanical and electrothermal debracketing, to evaluate effectiveness of high and low speed rotary instrument and ultrasonic instrument during residual adhesive remnants removal, and to measure resin film surface(percentage) using by image analyser(Leco 300). Bond fracture site, bracket fracture, and enamel surface damage were examined by scanning electron microscope. The following results were obained : 1. In the mechanical debracketing group, the bond failed predominantly at enamel-adhesive interface with the bulk of adhesive remaining on bracket base. 2. In the eletrothermal debracketing group, the bond failed predominantly at adhesive-bracket interface with the bulk of adhesive remaining on enamel surface. 3. The most effectiveness of residual resin removal was obtained by means of the resin polishing bur and the order of scratch formation was the procedure using tungsten carbide bur, ultrasonic scaler, sof-lex disc, and polishing bur. 4. The order of the resin film surface percentage was ultrasonic scaler, tungsten carbide bur, sof-lex disc, and resin polishing bur.

  • PDF

ENAMEL SURFACE EVALUATION ON VARIOUS REMOVAL TECHNIQUE OF BRACKET (DBS): A STUDY WITH THE SCANNING ELECTRON MICROSCOPY (수종의 BRACKET(DBS)제거방법에 따른 법랑질 표면에 대한 주사전자현미경적 연구)

  • Song, Jung-Kook;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.271-277
    • /
    • 1985
  • With modification of the acid etch technique and improvements of the physical and mechanical properties of the acrylic resin, the removal of directly bonded attachments and the finishing of the underlying enamel have become an acute clinical problem. This study was to evaluation the efficacy of recently introduced instrumentation and techniques to remove bonded brackets and residual resin, and restore the affected enamel surface to an acceptable clinical condition. Fortyeight premolar which were scheduled for extraction for orthodontic purposes were bonded with brackets using super-C ortho. Four additional premolars with untreated surfaces were used as controls. After one weak the brackets were removed and the residual resin removed by hand scaler, green stone, green rubber wheel, sandpaper disc, tungsten carbide bur, Sof-lex disc. Half the experimental teeth were given a final pumicing and then all were extracted and stored in 50 percent ethanol. The scanning electron microscopy was used to evaluated the enamel surface. Following results were obtained; 1. A satisfactory result was obtained by means of the Sof-lex disc. 2. The order of the scratch formation was the procedure using hand scaler, green atone, tungsten carbide bur, sandpaper disc, green rubber wheel, and Sof-lex disc. 3. The procedures using green stone and tungsten carbide bur showed many groove formations and the other procedures showed none. 4. final pumicing serves effectively to remove residual adhesive and restore the enamel surface.

  • PDF

Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester (축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구)

  • Kim, Min Soo;Hee Kim, Kyung;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.

Structural Changes of Adhesive Discs during Attachment of Boston Ivy

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.111-116
    • /
    • 2014
  • This study investigates the developmental pattern of adhesive discs (ADs) to highlight the ontogeny and structural changes that occur during the growth of Boston ivy. Initiation to postmortem features of ADs were examined through light and scanning electron microscopy. The study also reveals a new finding of the dislocation of peripheral tissues of adaxial origin. Four phases of attachment are suggested with regards to its climbing behavior: 1) pre-attachment, 2) upon attachment, 3) after attachment, and 4) final attachment. During initiation, several ADs originate from tendril primordia without epidermal differentiation. However, different growth rates in the epidermis results in completely different ADs. ADs were discerned by size, shape, and color during expansion, but cells in the adaxial surface remained alive longer than the other side. Upon contact, the ADs demonstrate simultaneous growth and deterioration, but once attachment is established the latter process subdues to final stages. Epidermal transformation, adhesive secretion, cellular disruption, and mechanical stress were essential for the self-clinging nature of Boston ivy. The post-attachment sequence is also believed to be critical in achieving maximum mechanical strength to provide extensive support. The developmental process of ADs is prompted by tactile stimulation but in a highly organized and systematic manner.

Discussion of the relationship between adhesion force and braking force in slip condition (제동시 점착력과 제동력의 관계에 대한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

The Roofing System of High wind-Resistant Performance using Thermoplastic polyolefin and Electromagnetic Induction Technology (TPO 시트재와 유도가열공법을 적용한 고내풍성 지붕마감 공법)

  • Choi, Hee-Bok;Shin, Yoon-Seok;Choi, Jin-Cheol;Lee, Bo-Hyeong;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • Strong winds according to global warming cause the increase of the frequency and the repair cost of damaged roofs. In the United States, Factory Mutual Insurance Company(FMIC) promotes the roofing design that resists heavy wind-load, as the means of strict criteria. This fact reveals that more durable roofing system will be also required in Korea. Therefore, this study aims at developing such a system with high wind-resistance performance using Thermoplastic polyolefin(TPO) and Electromagnetic induction technology(EIT) than the previous systems. The system presented in this study consists of 4 main devices as follow; 1) a disc to fix sheets for TPO & EIT method, which can conduct structural design according to site condition, such as region, building height, and wind load. 2) a nail to have about 30% stronger lifting-up capacity than that of the previous nail. 3) a disc to fix sheets, which has triangle protuberance not to damage sheets in the repeatable wind load, and 4) a electromagnetic induction device to combine a disc and a sheet by heating uniformly and quickly adhesive agent on the disc. The results of mock-up test illustrate that the system provides wind-resistant performance to achieve satisfactorily the structural design criteria of FMIC. In addition, the system is faster, chipper, and easier than the existing system, and is expected that this roofing system can be applied to the rehabilitations of an existing as well as a new building.

A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method (Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구)

  • Kwak, Hyun-Man;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF