• Title/Summary/Keyword: Adhesive Wear

Search Result 138, Processing Time 0.028 seconds

DETERMINATION OF TRANSIENT WEAR DISTANCE IN THE ADHESIVE WEAR OF A6061 ALUMINIUM ALLOY REINFORCED WITH ALUMINA PARTICLES

  • Yang, L.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.217-218
    • /
    • 2002
  • An integrated adhesive wear model was proposed to determine the transient wear and steady-state wear of aluminium alloy matrix composites. The transient wear volume was described by an exponential equation, while the steady-state wear was governed by a revised Archard equation, in which both the transient wear volume and transient sliding distance were excluded. A mathematical method was developed to determine both the transient distance and the net steady-state wear coefficient. Experimental wear tests were carried out on three types of commercial A6061 aluminum alloy matrix composites reinforced with 10%, 15% and 20% alumina particles. More accurate wear coefficient values were obtained with the proposed model. The average standard wear coefficient, as determined by the original Archard equation, was found to be about 51% higher.

  • PDF

Comprehensive Wear Study on Powder Metallurgical Steels for the Plastics Industry, Especially Injection Moulding Machines

  • Gornik, Christian;Perko, Jochen
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.399-400
    • /
    • 2006
  • M390 microclean(R) of $B{\ddot{o}}hler$ Edelstahl is a powder metallurgical plastic mould steel with a high level of corrosion and wear resistance and therefore often used in the plastics processing industry. But as a consequence of rapidly advancing developments in the plastics processing industry the required level of wear resistance of tool steels in this field is constantly rising. For that reason a new PM tool steel with higher hardness values and an increased amount of primary carbides has been developed to improve the resistance against abrasive and adhesive wear. The wear resistance of both steels against adhesive situations for components of the plastification unit of injection moulding machines has been tested with a novel method. In case of processing polyolefins with an injection moulding machine it was found that there is adhesive wear between the check-ring and the flights of the screw tip of the non-return valve under certain circumstances. The temperature in that region was measured with an infrared temperature sensor. The existence of significant peaks of that signal was used as an indicator for an adhesive wear situation.

  • PDF

Wear Behavior of Plasma Transferred Arc Deposited Layers for Ni - and Co - base Alloy (Ni계 및 Co계 합금 PTA 오버레이용접층의 마모거동에 관한 연구)

  • 윤병현;이창희;김형준
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.540-547
    • /
    • 2001
  • This study has evaluated the wear behavior of PTA (Plasma Transferred Arc) Inconel 625 and Stellite 6 overlays on Nimonic 80A substrate. Nimonic 80A alloy was also included for comparison. In order to evaluate the wear performance, three-body abrasive wear test and pin-on-disk dry sliding wear test were performed. Microstructural development during the solidification of deposits is also discussed. Wear test results show that the wear rate of Stellite 6 deposit is lower than that of Inconel 625 deposit and Nimonic 80A. The sliding wear resistance of overlay deposits follows a similar trend to the abrasive wear resistance, but for Nimonic 80A. The main wear mechanisms were abrasive wear for Inconel 625 deposit, adhesive wear and delamination for Stellite 6 deposit in pin-on-disk dry sliding wear test and ploughing in three-body abrasive wear test. Cross sectional examinations of the worn surface of pin specimens after pin-on-disk dry sliding wear test implies that the plastic deformation near worn surface has occurred during the wear testing.

  • PDF

Wear Characteristics of the Extruded Bars of Hypereutectic Al-Si Alloy Powders produced by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-Si합금분말 압출재의 마멸특성)

  • Ahn, Young-Nam;Cho, Gue-Serb;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.447-454
    • /
    • 1994
  • Wear resistance and wear mechanism of hypereutectic Al-($15{\sim}40$)wt%Si alloys were investigated. Primary Si particles under $20{\mu}m$ size were formed in hypereutectic Al-Si alloy powders due to rapid solidification. But the Si particles of extruded bars were finely distributed in smaller size than that of atomized powders. The wear mechanism of hypereutectic Al-Si alloys was divided into three types of wear phenomena, which were abrasive wear, delamination wear and severe adhesive wear according to sliding speed and load. At low sliding speed and load, wear mechanism was abrasive wear, so Al-15wt%Si alloy showed the best wear resistance. At high sliding speed and load, wear mechanism was adhesive wear, and Al-40wt%Si alloy showed the best wear resistance.

  • PDF

Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping (극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향)

  • Ji, Min-Ki;Noh, Yeonju;Kang, Hyun-Hak;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity (실리콘 돌기의 응착마찰 분자동력학 시뮬레이션)

  • Park, Seung-Ho;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • A hemispherical asperity moving over a flat plane is simulated based on classical molecular dynamics. The asperity and the plane consist of silicon atoms whose interactions are governed by the Tersoff three-body potential. The gap between the asperity and the plane is maintained to produce attractive normal force in order to investigate the adhesive friction and wear. The simulation focuses on the influence of crystallographic orientation of the contacting surfaces and the moving direction. It is demonstrated that the adhesive friction and wear are lower when crystallographic orientations of the contacting surfaces are different, and also depend on the moving direction relative to the crystal1ographic orientation.

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

A Study on Wear and Wear Mechanism of Exhaust Valve and Seat Insert Depending on Different Speeds Using a Simulator

  • Hong, Jae-Soo;Chun, Keyoung-Jin;Youn, Young-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2052-2060
    • /
    • 2006
  • The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350$^{\circ}C$, and the test load was 1960 N. The test cycle number was $6.0{\times}10^6$. The mean ($\pm$standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 ($\pm$3.7)$\mu$m and 81.7 ($\pm$2.5)$\mu$m, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 ($\pm$3.9)$\mu$m and 91.2 ($\pm$2.7)$\mu$m, respectively. In the case of multi-Hz it was 70.7 ($\pm$2.4)$\mu$m and 77.4 ($\pm$3.8)$\mu$m, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.

A Study on the Friction and Wear Characteristics of Nitrogen Ions Coated SCM415 Steel (질소이온 코팅 SCM415강의 마찰.마모특성에 관한 연구)

  • Lyu, Sung-Ki;He, Hei-bo;Son, Yu-Sun
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • SCM415 alloy was implanted with nitrogen ions using plasma source ion implantation (PSII), at a dose range of $1{\times}10^{17}\;to\;6{\times}10^{17}N^{+}cm^{-2}$. Auger electron spectrometry (AES) was used to investigate the depth profile of the implanted layer. Friction and wear tests were carried out on a block-on-ring wear tester. Scanning electron microscopy (SEM) was used to observe the micro-morphology of the worn surface. The results revealed that after being implanted with nitrogen ions, the frictional coefficient of the surface layer decreased, and the wear resistance increased with the nitrogen dose. The tribological mechanism was mainly adhesive, and the adhesive wear tended to become weaker oxidative wear with the increase in the nitrogen dose. The effects were mainly attributed to the formation of a hard nitride precipitate and a supersaturated solid solution of nitrogen in the surface layer.