• Title/Summary/Keyword: Adhesion molecule

Search Result 311, Processing Time 0.029 seconds

Ameliorative Effect of the Water Extract from Cirsium japonicum var. ussuriense Leaves on Blood Circulation in a Rat Model of Topical Ferric Chloride-Induced Carotid Artery Damage (Ferric Chloride로 유도된 렛트 경동맥 손상 및 혈전에 대한 수용성 엉겅퀴 잎 추출물의 혈행 개선 효과)

  • Kang, Hyun Ju;Kim, Hyeon Soo;Jeon, In Hwa;Mok, Ji Ye;Jeong, Seung-Il;Shim, Jae Suk;Jang, Seon Il
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • The present study has been undertaken to investigate the effect of the extract of Cirsium japonicum var. ussuriense leaves (CLE) on blood circulation in a rat model of topical ferric chloride ($FeCl_3$)-induced carotid artery damage. $FeCl_3$ treatment seriously damaged the carotid artery such as the walls of the artery, blood flow and inflammation. However, CLE administration has ameliorated blood circulation and suppressed vessel inflammation. CLE administration also has ameliorated the $FeCl_3$-induced artery tissue damage. Furthermore, CLE significantly suppressed the expression of adhesion molecules. These results suggest that CLE ameliorate blood circulation through suppress inflammatory mediator and adhesion molecule production.

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Vitamin C Blocks TNF-${\alpha}$-induced NF-kB Activation and ICAM-1 Expression in Human Neuroblastoma Cells

  • Son, Eun-Wha;Mo, Sung-Ji;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1073-1079
    • /
    • 2004
  • Interactions of the cell adhesion molecules are known to play important roles in mediating inflammation. The proinflammatory cytokine, tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), activates the NF-kB signaling pathway, which induces the expression of various genes, such as intercellular adhesion molecule-1 (ICAM-1). In this study, the effect of vitamin C on the ICAM-1 expression induced by TNF-${\alpha}$ in a human neuroblastoma cell line, SK-N-SH was investigated. Treatment with vitamin C resulted in the downregulation of the TNF-${\alpha}$-induced surface expression and ICAM-1 mRNA levels in a concentration-dependent manner. Moreover, a gel shift analysis indicated that vitamin C dose-dependently inhibited the NF-kB activation and IkB${\alpha}$ degradation induced by TNF-${\alpha}$. Taken together, these results suggest that vitamin C downregulates TNF-${\alpha}$- induced ICAM-1 expression via the inhibition of NF-kB activation.

Effect of Water on Lecithin/Bile/Decane Organogels (레시틴/담즙염/데케인 유기젤에 대한 물의 영향)

  • Eun-ae Chu;Na-hyeon Kim;Min-seok Kang;Kyo-chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.131-135
    • /
    • 2023
  • Lecithin self-assembles into reverse spherical micelles in organic solvents as an amphiphilic molecule. When additives such as bile salts and water are introduced into lecithin solutions, it induces structural changes in the molecular form of lecithin, leading to the transformation into reverse cylindrical micelles. In this study, we observe the rheological changes of lecithin/bile salt mixtures in a decane system after the addition of water. The resulting mixtures exhibit high viscosity and characteristics of viscoelasticity, suggesting potential applications in various fields such as drug delivery and edible oil gels.

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Cadms/SynCAMs/Necls/TSLCs Interact with Multi-PDZ Domain Protein MUPP1 (Cadms/SynCAMs/Necls/TSLCs와 multi-PDZ domain protein MUPP1 단백질의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1276-1283
    • /
    • 2014
  • Cell adhesion molecules determine the cell-cell binding and the interactions between cells and extracellular signals. Cell-cell junctional complexes, which maintain the structural integrity of tissues, consist of more than 50 proteins including multi-PDZ domain protein 1 (MUPP1). MUPP1 contains 13 postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains and serves a scaffolding function for transmembrane proteins and cytoskeletal proteins or signaling proteins, but the mechanism how MUPP1 links and stabilizes the juxtamembrane proteins has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and cell adhesion molecule 1 (Cadm1, also known as SynCAM1, Necl-2, or TSLC1). Cadm1 bound to the second PDZ domain of MUPP1. The carboxyl (C)-terminal end of Cadm1 has a type II PDZ-association motif (-Y-F-I) which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. MUPP1 also bound to the C-terminal cytoplasmic tail region of other Cadm family members (Cadm2, Cadm3, and Cadm4). In addition, these protein-protein interactions were observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-MUPP1 antibody co-immunoprecipitated Cadm1 and Cadm4 with MUPP1 from mouse brain extracts. These results suggest that MUPP1 could mediate interaction between Cadms and cytoskeletal proteins.

Synergistic Efficacy of Concurrent Treatment with Cilostazol and Probucol on the Suppression of Reactive Oxygen Species and Inflammatory Markers in Cultured Human Coronary Artery Endothelial Cells

  • Park, So-Youn;Lee, Jeong-Hyun;Shin, Hwa-Kyoung;Kim, Chi-Dae;Lee, Won-Suk;Rhim, Byung-Yong;Shin, Yung-Woo;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.165-170
    • /
    • 2008
  • In the present study, we aimed to identify the synergistic effects of concurrent treatment of low concentrations of cilostazol and probucol to inhibit the oxidative stress with suppression of inflammatory markers in the cultured human coronary artery endothelial cells (HCAECs). Combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.03${\sim}0.3{\mu}$M) significantly suppressed TNF-${\alpha}$-stimulated NAD(P)H-dependent superoxide, lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production and TNF-${\alpha}$ release in comparison with probucol or cilostazol alone. The combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.1${\sim}0.3{\mu}$M) inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) more significantly than did the monotherapy with either probucol or cilostazol. In line with these results, combination therapy significantly suppressed monocyte adhesion to endothelial cells. Taken together, it is suggested that the synergistic effectiveness of the combination therapy with cilostazol and probucol may provide a beneficial therapeutic window in preventing atherosclerosis and protecting from cerebral ischemic injury.

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Effects of Antioxidant on the Hypoxia-induced Expression of ICAM-1 in Cultured Human Synovial Fibroblasts (저산소증에 의한 활막 섬유모세포의 ICAM-1 발현에 대한 항산화제의 영향)

  • Kim, Jung Ryul;Yoo, Wan Hee
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.25-34
    • /
    • 2002
  • Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial hyperplasia and joint destruction. The synovial fibroblasts express cell adhesion molecules and have a role in adhesive interation with inflammatory cells in synovial tissue. It has been suggested that hypoxic conditioins are thought to exist in arthritic joints, and several studies indicate that reactive oxygen species (ROS) produced in hypoxic condition can initiate events that lead to pro-adhesive changes via increased expression of adhesion molecules. So, this study wsa designed to examine whether antioxidant can inhibit hypoxia-induced expression of ICAM-1 in cultured human synovial fibroblasts. Methods: Synovial fibroblasts were isolated from synovial tissue in patients with RA and cultured at hypoxic condition. Antioxidant, PDTC (pyrrolidine dithiocarbamate) were pre-treated for an hour before the hypoxic culture and synovial fibroblasts were harvested at 0, 6, 12, 24, 48 hours time points. Cell surface ICAM-1 expression in synovial fibroblasts was examined by the flow cytometric analysis. To analyse the expression of ICAM-1 mRNA, reverse-transcriptase polymerase chain reaction (RT-PCR) was performed. The levels of cytokines in culture supernatants were measured by ELISA, and activation of NF-${\kappa}B$ was analysed by electrophoretic mobility shift assay. The adhesive reaction between synovial fibroblasts and lymphocytes was assayed by measurement of fluorescent intensity of BCECF-AM in lymphocytes. Results: Hypoxic stimuli up-regulated the ICAM-1 expression as well as the adhesive interaction of human synvial fibroblasts to lymphocytes in a time-dependent manner, and PDTC inhibited hpyoxia-induced ICAM-1 expression and cell-cell interaction. PDTC also inhibited the hypoxia-induced activation of intracellular transcription factor, NF-${\kappa}B$. PDTC decreased the amount of hypoxia-induced production of IL-$1{\beta}$ and TNF-${\alpha}$. Conclusion: These studies demonstrate that PDTC inhibit the hypoxia-induced expression of the adhesion molecule, ICAM-1 and activation of NF-${\kappa}B$ in cultured human synovial fibroblasts.

Effects of Antioxidant and Anti-inflammatory Activity of Allii Macrostemonis Bulbus Cheonghyeol Plus on the Inhibition of Atherosclerosis (해백청혈플러스(AMCP)의 항산화 및 항염증 작용을 통한 죽상동맥경화 억제 효과)

  • Chae, Incheol;Ryu, Juyeong;Yoo, Horyong;Kim, Yoonsik;Seol, Inchan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.126-135
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant, anti-inflammatory and anti-cellular adhesion molecules effects of Allii Macrostemonis Bulbus, Artemisiae Capillaris Herba, Curcumae Radix, Crataegi Fructus, Salviae Militiorrhizae Radix complex extract(AMCP) on the inhibition of atherosclerosis in HUVEC. We measured DPPH radical scavenging activity and ABTS radical scavenging activity of AMCP to evaluate its antioxidant effect. And we also measured the expression level of NF-κB, IκBα, ERK, JNK, p38 proteins to evaluate its anti-inflammatory effect. Lastly, we measured the expression level of MCP-1, ICAM-1, VCAM-1 mRNA and their level to evaluate its anti-celluar adhesion molecules. AMCP did not show any cytotoxicity in HUVEC within the concentraion tested except for a concentration of 400 ㎍/㎖. AMCP increased the DPPH radical scavenging activitiy and ABTS radical scavenging activity in HUVEC as the concentration of AMCP rises. AMCP significantly reduced NF-κB, IκBα, JNK, ERK and p38 protein expression in HUVEC compared to control group. AMCP significantly reduced MCP-1, ICAM-1, VCAM-1 gene expresion in HUVEC compared to control group. AMCP significantly decreased the levels of MCP-1, ICAM-1, VCAM-1 in HUVEC compared to control group. These results suggest that AMCP has effects on antioxidation, anti-inflammation and anti-cellular adhesion molecule, which helps the treatment and prevention of dyslipidemia and atherosclerosis.