• 제목/요약/키워드: Adhesion force model

검색결과 51건 처리시간 0.029초

비접촉 방식 레이저 프린터 현상롤러 위에 부착된 마이크로 토너 입자의 부착힘 측정 (Measurements of Adhesion Force of Micro-Sized Toner Particles Deposited on the Developing Roller Surface in a Non-contact type Laser Printer)

  • 김상윤;이대영;신서원;은종문;황정호
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2005
  • Study for toner adhesion is known as an important role in electrophotography. In this research, a centrifugal detachment method was used to measure the adhesion force of several hundred particles simultaneously and to determine its sensitivity to particle size. For uncharged toner particles, we estimated the van der Waals force based on the centrifugal farce experiments. Then for charged toner particles, the centrifugal force experiments were carried out. The difference between the results for charged toner particles and the results for uncharged toner particles was compared with the image force calculated from a model which assumed that the toner charge was located at the center of the particle. In the calculations, experimental data obtained by E-SPART (Electrical- Single Particle Aerodynamic Relaxation Time) analyzer were used. The adhesion force of micro-sized toner particles deposited on the DR surface was found to be approximately 1${\~}$3 nN.

  • PDF

거친 면 접촉의 정적 마찰계수 해석 (Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

제동시 점착력과 제동력의 관계에 대한 고찰 (Discussion of the relationship between adhesion force and braking force in slip condition)

  • 김영국;김석원;목진용;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

벽면흡착에 의해 야기되는 유동 수치해석 (NUMERICAL SIMULATION OF FLOWS INDUCED BY WALL ADHESION)

  • 명현국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.2-5
    • /
    • 2011
  • This paper presents a numerical study on multiphase flows induced by wall adhesion The CSF(Continuum Surface Force} model is used for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing As an application of the present method, the effects of wall adhesion are numerically simulated with the CSF model for a shallow pool of water located at the bottom of a cylindrical tank. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows induced by wall adhesion.

  • PDF

전자 종이용 하전 입자의 부착력 분석 (Adhesion Force Analysis of Charged Particles for the E-paper)

  • 김승택;김형태;이상호;김종석
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.87-91
    • /
    • 2010
  • Charged micro-particles are widely used as the key components for many electrical applications such as an e-paper, a touch panel, a printer toner and an electronic ink. Among them, the e-paper is an emerging reflective type display using the charged particles that has the advantages of the extremely low power consumption and sunlight readability. To create images on the e-paper, we confine black positively-charged and white negatively-charged particles between bottom and top electrodes and selectively apply the electric field. When the Coulomb force by an applied electric field is greater than the adhesion force between the charged particle and the electrode, the particles' transition happens resulting in the change of color between black and white. Therefore, the adhesion force is a very important factor for designing and estimating e-paper's operation. In this study, we constructed a basic model for particle's transition and an adhesion force equation describing particle's transition with three different forces: electrostatic image force, Van der Waals force and gravitational force. The simulation results showed that the gravitational force is negligible for the interesting range for the charge and the radius, and the adhesion force can be strongly dependent on the particle's charge and radius.

증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구 (Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes)

  • 김성빈;민동균
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

벽면부착에 의해 야기되는 다상유동에 관한 수치적 연구 (Numerical Study on Multiphase Flows Induced by Wall Adhesion)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.721-730
    • /
    • 2012
  • 본 연구에서는 벽면부착에 의해 야기되는 다상유동에 대한 수치적 연구를 제시한다. 먼저 다상유동 해석을 위해 표면장력에 대한 CSF(Continuum Surface Force) 모델 및 벽면부착 경계조건 모델을 비정렬격자계에 적합하도록 수치해석방법을 정립시키고, Myong(2009)이 개발한 비정렬격자계와 VOF 방법으로 체적포착법(volume capturing method)을 사용한 수치해석방법(코드)에 삽입하였다. 또한 본 수치해석방법을 사용하여 중력을 포함하여 어떤 외력도 존재하지 않고 오직 벽면부착에 의해 야기되는 유동현상인 원통형 탱크의 바닥에 위치한 얕은 물풀(water pool)에 대해 물이 벽면을 적시는 경우와 적시지 않는 경우에 대해 수치해석 하였다. 연구결과, 본 수치해석방법은 벽면부착에 의해 야기되는 다상유동 문제에 대한 유용성이 입증되었다.

구면 콘택트렌즈의 피팅에 따른 각막 부착력 해석 (Analysis on the Depressing Force to the Cornea by Fitted Spherical Contact Lens)

  • 김대수
    • 한국안광학회지
    • /
    • 제16권1호
    • /
    • pp.97-106
    • /
    • 2011
  • 목적: 구면 콘택트렌즈(렌즈)가 각막에 피팅되는 경우 렌즈가 각막을 누르는 힘(압력, 부착력)을 tight 및 flat 피팅 별로 이론적으로 비교 분석하였다. 방법: Tight 및 flat 피팅 상태에서 렌즈의 각막 부착력을 계산할 수 있는 방정식 및 수치해석 프로그램(모델)을 수립하였다. 이 모델에 근거하여 BC, 직경, 두께, 모서리 형상 등 제반 렌즈변수와 각막형상(각막의 장축/단축 비, p) 변화에 수반되는 렌즈의 각막부착력을 tight 또는 flat 피팅 별로 예측/해석하였다. 결과: 각막의 p값이 증가할수록 각막부착력은 증가한다. p 값 증가에 따른 부착력 상승은 flat 피팅 경우가 tight에 비해 월등히 크다. 렌즈의 BC가 증가할수록 각막부착력은 flat 피팅에서는 큰 폭으로 감소하는데 반해 tight 피팅에서는 그 증가가 미미하다. 렌즈 직경이 증가할수록 각막부착력은 tight/flat 피팅 모두에서 미미하게 감소한다. 렌즈의 모서리형상(모서리각도 ${\Psi}$)과 렌즈두께는 tight 피팅에서만 영향을 미치는 요소들이다. Tight 피팅된 렌즈가 각막을 누르는 힘은 모서리 각도에 비례하여 증가한다. Tight 피팅 렌즈는 두께가 증가할수록 렌즈가 각막을 누르는 각막부착력은 두께에 반비례로 감소한다. 결론: 피팅상태의 렌즈가 각막을 누르는 힘에 가장 크게 영향을 미치는 2 가지 요소는 각막의 만곡도와 렌즈의 BC이다.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

차량 견인특성모델링 및 점착력 추정 (Adhesion Estimation and Modeling on Traction Characteristic of Vehicle)

  • 변윤섭;김민수;목재균;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1765_1766
    • /
    • 2009
  • In this paper, we propose the mathematical model for the vehicle system and the observer for adhesion force. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. From two equations, we get the observer on adhesion force. Simulation results show that the proposed observer have the good performance compared with the normal observer.

  • PDF