• Title/Summary/Keyword: Adhesion energy

Search Result 558, Processing Time 0.027 seconds

Shape-dependent Adhesion and Friction on Au Nanoparticles Probed with Atomic Force Microscopy

  • Yuk, Youngji;Hong, Jong Wook;Han, Sang Woo;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.141-141
    • /
    • 2013
  • Shape control of metal nanocrystals has broad applications, including catalysis, plasmonics, and sensing. It was found that controlling the atomic arrangement on metal nanocrystal surfaces affects many properties, including the electronic dipole or work function. Tuning the surface structure of exposed facets of metal nanocrystals was enabled by shape control. We investigated the effect of shape on nanomechanical properties, including friction and adhesion forces. Two nanoparticles systems, high-index {321} and low-index {100}, were used as model nanoparticle surfaces. Scanning force microscopy was used to probe nanoscale friction and adhesion. Because of the abundant presence of high-density atomic steps and kinks, high-index faceted nanoparticles have a higher surface energy than low-index faceted cubic nanoparticles. Due to this high surface energy, high-index faceted particles have shown stronger adhesion and higher friction than low-index nanoparticles. We discuss the results in light of the differences in surface energy as well as the effect of capping layers in the measurement.

  • PDF

Adhesion and Electrical Performance by Plasma Treatment on Semiconductive-Insulation Interface Layer of Silicone Rubber (실리콘 고무의 플라즈마 표면처리된 반도전-절연계면 처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and AFM. Adhesion was obtained from T-peel tests of semiconductive layer having different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the the creation of O-H and C=O. It is observed that adhesion performance was determined by not surface energy but roughness level of silicone surface. It is found that ac dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Structural Effect of Conductive Carbons on the Adhesion and Electrochemical Behavior of LiNi0.4Mn0.4Co0.2O2 Cathode for Lithium Ion Batteries

  • Latifatu, Mohammed;Bon, Chris Yeajoon;Lee, Kwang Se;Hamenu, Louis;Kim, Yong Il;Lee, Yun Jung;Lee, Yong Min;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.330-338
    • /
    • 2018
  • The adhesion strength as well as the electrochemical properties of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ electrodes containing various conductive carbons (CC) such as fiber-like carbon, vapor-grown carbon fiber, carbon nanotubes, particle-like carbon, Super P, and Ketjen black is compared. The morphological properties is investigated using scanning electron microscope to reveal the interaction between the different CC and the active material. The surface and interfacial cutting analysis system is also used to measure the adhesion strength between the aluminum current collector and the composite film, and the adhesion strength between the active material and the CC of the electrodes. The results obtained from the measured adhesion strength points to the fact that the structure and the particle size of CC additives have tremendous influence on the binding property of the composite electrodes, and this in turn affects the electrochemical property of the configured electrodes.

A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes

  • Song, Jihun;Shin, Dong Ok;Byun, Seoungwoo;Roh, Youngjoon;Bak, Cheol;Song, Juhye;Choi, Jaecheol;Lee, Hongkyung;Kwon, Tae-Soon;Lee, Young-Gi;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.227-236
    • /
    • 2022
  • The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 ㎛ (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.

Adhesion Characteristics of Polymer Material Treated by Atmospheric Pressure Plasma (상압 플라즈마 표면처리에 의한 고분자 재질의 접착특성 변화)

  • Seo, Seung-Ho;Chang, Sung-Hwan;Yoo, Yeoung-Een;Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • We studied the adhesion characteristics of polymer films (PC, PET, EVA) treated by atmospheric pressure plasma. The process parameters were the frequency, gas flow, and treatment time; we studied the effects of these parameters on the adhesion characteristics of the polymer materials. We used de-ionized water and diiodomethane as the polar and nonpolar solvents, respectively, for measuring the contact angles, and subsequently calculated the surface free energy of each polymer film. The adhesion characteristics were studied by carrying out a $180^{\circ}$ peel-off test. The polymer films treated with plasma developed a hydrophilic surface, which led to increased surface free energy and improved adhesion properties. From the results for contact angle, surface free energy, and adhesion strength, we obtained the optimal plasma-treatment conditions.

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

High-temperature Adhesion Promoter Based on (3-Glycidoxypropyl) Trimethoxysilane for Cu Paste

  • Jiang, Jianwei;Koo, Yong Hwan;Kim, Hye Won;Park, Ji Hyun;Kang, Hyun Suk;Lee, Byung Cheol;Kim, Sang-Ho;Song, Hee-Eun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3025-3029
    • /
    • 2014
  • To realize copper-based electrode materials for printed electronics applications, it is necessary to improve the adhesion strength between conductive lines and the substrate. Here, we report the preparation of Cu pastes using (3-glycidoxypropyl) trimethoxysilane (GPTMS) prepolymer as an adhesion promoter (AP). The Cu pastes were screen-printed on glass and polyimide (PI) substrates and sintered at high temperatures (> $250^{\circ}C$) under a formic acid/$N_2$ environment. According to the adhesion strengths and electrical conductivities of the sintered Cu films, the optimized Cu paste was composed of 1.0 wt % GPTMS prepolymer, 83.6 wt % Cu powder and 15.4 wt % vehicle. After sintering at $400^{\circ}C$ on a glass substrate and $275^{\circ}C$ on a PI substrate, the Cu films showed the sheet resistances of $10.0m{\Omega}/sq$. and $5.2m{\Omega}/sq$., respectively. Furthermore, the sintered Cu films exhibit excellent adhesion properties according to the results of the ASTM-D3359 standard test.

A Study on Improvement of Interfacial Adhesion Energy of Inkjet-printed Ag Thin film on Polyimide by CF4 Plasma Treatment (CF4플라즈마 처리에 의한 잉크젯 프린팅 Ag박막과 폴리이미드 사이의 계면파괴에너지 향상에 관한 연구)

  • Park, Sung-Cheol;Cho, Su-Hwan;Jung, Hyun-Cheol;Joung, Jae-Woo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • The effect of $CF_4$ plasma treatment condition on the interfacial adhesion energy of inkjet printed Ag/polyimide system is evaluated from $180^{\circ}$ peel test by calculating the plastic deformation energy of peeled metal films. Interfacial fracture energy between Ag and as-received polyimide was 5.5 g/mm. $CF_4$ plasma treatment on the polyimide surface enhanced the interfacial fracture energy up to 17.6 g/mm. This is caused by the increase in the surface roughness as well as the change in functional group of the polyimide film due to $CF_4$ plasma treatment on the polyimide surface. Therefore, both the mechanical interlocking effect and the chemical bonding effect are responsible for interfacial adhesion improvement in ink jet printed Ag/polyimide systems.

Ion Beam-based Surface Modification of Polyimide Films for Adhesion Improvement with Deposited Metal Layer

  • Cho, Hwang-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.335-339
    • /
    • 2010
  • In this study, the surface of polyimide (PI) films was modified using ion implantation to enhance its adhesion to a deposited copper (Cu) layer. The surfaces of the PI films were implanted with 150 keV $Xe^+$ ions at fluences varying from $1{\times}10^{14}$ to $1{\time}10^{16}ions\;cm^{-2}$. The Cu layers were then deposited on the implanted PI. The surface properties of the implanted PI film were investigated based on the contact angle measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, the adhesive strength between the deposited Cu layer and PI film was estimated through a scratch test using a nanoindenter. As a result, the surface environment of the PI film was changed by the ion implantation, which could have a significant effect on the adhesion between the deposited Cu layer and the PI.

Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper (금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구)

  • 최성우;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF