• Title/Summary/Keyword: Adhesion characteristics

검색결과 875건 처리시간 0.024초

슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성 (Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method.)

  • 최응규
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

IBAD 방법으로 코팅된 PTFE 박막의 마이크로/나노 응착 및 마찰 특성 (Micro/Nano Adhesion and Friction Characteristics of PTFE Coating Film Deposited by IBAD Method)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.237-244
    • /
    • 2004
  • Micro/nano tribological characteristics of PTFE coating films were experimentally studied. PTFE (polytetrafluoroethylene) modified polyethylene and low molecular weight PTFE were used as a coating materials. These films were deposited on Si-wafer (100) by IBAD (ion beam assisted deposition) method. The Ar ion beam sputtering was performed to change the surface topography of films using a hollow cathode ion gun under different Ar ion dose conditions in a vacuum chamber. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribotester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. The durability of the films were measured with macro tribotester. Results showed that the PTFE coating surfaces were converted to hydrophobic. The water contact angle of coated surfaces and surface roughness increased with the coating thickness. Adhesion and friction in micro and nano scale were governed by magnitude of normal load in soft material such as PTFE films. As the increase of sputtering time on low molecular weight PTFE films, the surface roughness was increased and nano adhesion and friction were decreased. The nano tribological characteristics of surfaces are mainly improved by chemical modification such as PTFE coating and given a synergy effect by the physical modification such as topographic modification.

유도전동기를 이용한 차량주행특성 시뮬레이터 (Vehicle Running Characteristic Simulator using Induction Motor)

  • 변윤섭;김영철;목재균
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.

투명 차폐 필름 구현을 위한 전도성 복합 바인더의 입자구조에 따른 성능 평가 (A Study on Adhesion of Mechanical Properties of Rubber by MgCl2)

  • 박지원;백종호;이태형;김현중
    • 접착 및 계면
    • /
    • 제18권2호
    • /
    • pp.59-67
    • /
    • 2017
  • 스마트 모바일 산업의 성장에 따라 부품의 집적화가 가속화 되고 있다. 이러한 부품의 집적화는 부품간의 간섭현상문제를 야기했으며, 이를 해결하기 위한 전자파 차폐 기술의 중요성이 부각되고 있다. 전자파 차폐 기술은 전자파를 반사하거나 흡수하는 방식으로 구현되며, 일반적으로 전도성물질이 전자파 차폐에 활용된다. 최근 산업의 변화에 따라 투명 차폐기술이 요구되고 있으며, 본 연구에서는 임프린팅 기술을 활용한 음각 구조 패턴에 전도성 복합 바인더를 충진 하여 투명 차폐소재를 제안하고자 하였다. 전도성 복합 바인더를 제조하기 위하여 UV 중합 아크릴 바인더를 활용하고 전도성 부여를 위해 구상, 판상 및 적층상의 은 입자를 활용하였다. 은 입자의 구조적인 특징에 따라 경화특성, 전도성 그리고 접착력의 변화를 확인하였다. 경화과정에서는 구상 입자의 활용이 가장 효율적이었으며, UV에 취약한 구조를 보완할 추가적인 경화 시스템이 요구되었다. 전도성평가에서는 적층상 구조가 우수한 특성을 보였다. 접착력은 구상이 가장 우수한 특성을 보였으며, 표면에서의 불규칙성에 따른 결과로 평가된다. 최종적으로 이를 활용한 패턴필름은 우수한 투명특성을 보여주었다.

Characteristics of adhesion areas between the tissue expander and capsule in implant-based breast reconstruction

  • Lim, Yoon Min;Park, Kwang Hyun;Lee, Dong Won;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • 제46권4호
    • /
    • pp.330-335
    • /
    • 2019
  • Background The use of anatomic implants has improved the aesthetic results of breast surgery; however, implant malrotation is an uncommon, but serious complication of these procedures. Nevertheless, little research has explored implant adhesion. In this study, we investigated adhesion between the expander and the capsule. Methods Seventy-nine cases of immediate breast reconstruction via two-stage implant-based reconstruction performed between September 2016 and November 2017 were evaluated. Mentor CPX4 expanders were used in 14 breasts, and Natrelle expanders in 65. We analyzed areas of adhesion on the surfaces of the tissue expanders when they were exchanged with permanent implants. We investigated whether adhesions occurred on the cephalic, caudal, anterior, and/or posterior surfaces of the expanders. Results Total adhesion occurred in 18 cases, non-adhesion in 15 cases, and partial adhesion in 46 cases. Of the non-adhesion cases, 80% (n=12) were with Mentor CPX4 expanders, while 94.4% (n=17) of the total adhesion cases were with Natrelle expanders. Of the partial adhesion cases, 90.7% involved the anterior-cephalic surface. The type of tissue expander showed a statistically significant relationship with the number of attachments in both univariate and multivariate logistic regression analyses (P<0.001) and with total drainage only in the univariate analysis (P=0.015). Conclusions We sought to identify the location(s) of adhesion after tissue expander insertion. The texture of the implant was a significant predictor of the success of adhesion, and partial adhesion was common. The anterior-cephalic surface showed the highest adhesion rate. Nevertheless, partial adhesion suffices to prevent unwanted rotation of the expander.

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

Influence of Surface Treatment of Polyimide Film on Adhesion Enhancement between Polyimide and Metal Films

  • Park, Soo-Jin;Lee, Eun-Jung;Kwon, Soo-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.188-192
    • /
    • 2007
  • In this work, the effects of chemical treatment of polyimide films were studied by FT-IR, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angles. The adhesion characteristics of the films were also investigated in the peel strengths of polyimide/aluminum films. The increases of surface functional groups of KOH-treated polyimide films were greatly correlated with the polar component of surface free energy. The peel strength of polyimides to metal substrate was also greatly enhanced by increasing the KOH treatment time, which can be attributed to the formation of polar functional groups on the polyimide surfaces, resulting in enhancement of the work of adhesion between polymer film and metal plate.

특수처리 입상비료를 이용한 포러스콘크리트의 해양식물 부착특성에 관한 연구 (Marine Plant Adhesion Properties of Porous Concrete Using Specially Treated Granular Fertilizer)

  • 이병재;박승범;이준;손성우;조광연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.893-896
    • /
    • 2006
  • This study examined plant adhesion characteristics of the porous concrete that used specially treated granular fertilizer for field application, which was used for the restoration of the marine ecosystem. The results of the experiment showed that nutrient eruption amount, the destruction and dissolution ratio tended to decrease when the coating thickness was increased. The void ratio and compressive strength tended to decrease when the specially treated granular fertilizer mixing ratio was increased. According to these results, the appropriate thickness of coating for cement coated granular fertilizer was 1.0mm. The adhesion ability of marine plant to porous concrete was superior when the cement coated granular fertilizer was mixed. Therefore, the appropriate cement coated granular fertilizer mixing ratio of 20% with a coating thickness of 1.0mm is thought to be a factor when considering the strength of the porous concrete for marine ecosystem restoration and the adhesion characteristics of marine plant.

  • PDF

$DDPO_4$$ODPO_4$SAM 코팅의 나노 응착 및 마찰 특성 연구 (Nano Adhesion and Friction of $DDPO_4$ and $ODPO_4$ SAM Coatings)

  • 윤의성;양승호;공호성
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.267-272
    • /
    • 2002
  • Nano adhesion between SPM(scanning probe microscope) tips and DDPO$_4$(octadecylphosphoric acid ester.) and ODPO$_4$(octadecylphosphoric acid ester) SAM(self-assembled monolayer.) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. DDPO$_4$ and ODPO$_4$ SAM were formed on Ti and TiOx surfaces. Ti and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of DDPO$_4$ and ODPO$_4$ SAM surfaces were compared with those of OTS(octadecyltrichlorosilane) SAM and DLC surfaces. DDPO$_4$ and ODPO$_4$ SAM converted the Ti and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic Results also showed that tribological characteristics of DDPO$_4$ and ODPO$_4$ SAM had good properties in the adhesion, friction, wetting angle and work of adhesion. DDPO$_4$ and ODPO$_4$ SAM could be one of the candidates for the bio-MEMS elements.