• Title/Summary/Keyword: Adenylate cyclase

Search Result 109, Processing Time 0.028 seconds

Thyroid Stimulating Immunoglobulin Bioassay Using Cultured Human Thyroid Cells; A Simplified Micromethod (갑상선질환에서 갑상선 자극면역글로불린측정의 의의에 관한 연구 -Micro법 갑상선세포배양에 의한 측정의 기본적 검토-)

  • Lee, Myung-Chul;Chung, June-Key;Cho, Bo-Youn;Koh, Chang-Soon;Lee, Mun-Ho;Ahn, Il-Min;Ahn, Hee-Kwon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.19 no.1
    • /
    • pp.95-102
    • /
    • 1985
  • The activation of adenylate cyclase of human thyrocytes in primary cell culture and the release of c-AMP into the medium are used to detect b-TSH and TSAb in sera of patients with autoimmune thyroid disease. Sera of patients are used directly as a part of cell culture without immunoglobulin precipitation. In the above TSI bioassay, TSAb pooled serum show c-AMP concentration between that of 1mU/ml and 10 mU/ml b-TSH but normal control pooled serum doesn't show any detectable c-AMP response. Ninety fiye percent of untreated Graves' patients shows TSAb activity above normal range, 20% of Hashimoto's and 36% of euthyroid Graves' patients show detectable TSAb activity.

  • PDF

A Case of Pseudohypoparathyroidism in a Premature Infant (미숙아에서 발견된 가성부갑상선 기능저하증 1례)

  • Yang, Jong Il;Seo, Jang Won;Kim, Ji Young
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.10
    • /
    • pp.1032-1035
    • /
    • 2003
  • In pseudohypoparathyroidism as reported by Albright in 1942, the parathyroid gland can normally synthesize and secrete parathyroid hormone(PTH). Pseudohypoparathyroidism has a similar biochemical finding with hypoparathyroidisms like hypocalcemia and hyperphosphatemia due to target tissue resistance to PTH. Administered PTH does not raise the serum levels of calcium and urinary phosphate. PTH activates G-protein in peripheral tissue and adenylate cyclase through a second messenger, cAMP. Pseudohypoparathyroidism produces hyperphosphatemia and hypocalcemia because of the resistance to PTH in peripheral tissue due to a defect of G-protein, although it releases PTH normally. According to the mechanism of resistance, pseudohypoparathyroidism is classified into types : Ia, Ib, Ic and psedopseudohypoparathyroism. Type Ia is accompanied by congenital growth retardation and abnormal bony development that shows mental retardation, obesity, low height, round face, short metacarpal bone and metatarsal bone, ectopic calcification, etc. We report a case of pseudohypoparathyroidism in a premature who shows hypocalcemia, hyperphosphatemia, elevation of serum PTH and 24 hr urinary basal c-AMP in biochemical tests without Albright's hereditary osteodystrophy at physical examination, accompanied by a spontaneous fracture in the femur.

Regulation of ERK1/2 by the C. elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells

  • Kim, Seungwoo;Shin, Youngmi;Shin, Youngju;Park, Yang-Seo;Cho, Nam Jeong
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.504-509
    • /
    • 2008
  • Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.

Experimental Intervention to Reverse Inhibition of Nitric Oxide Production by Cyclosporin A in Rat Aortic Smooth Muscle Cells (혈관평활근세포에서 Cyclosporin A에 의한 Nitric Oxide 생성억제를 길항하는 실험적 중재법)

  • Kim, In-Kyeom
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.211-219
    • /
    • 1996
  • The inhibitory effect of cyclosporin A (CsA) on nitric oxide production is not related to the immunosuppressive action of the drug, but to the renal toxicity and arterial hyper-tension. In this study the experimental interventions to reverse the inhibition of nitric oxide production by cyclosporin A in rat aortic smooth muscle cells were examined. CsA inhibited the accumulation of nitrite, the stable end product of nitric oxide, in culture media in a concentration $(0.1{\sim}100{\mu}g/ml)-dependent$ manner. The inhibitory effect of CsA on nitrite accumulation were not antagonized by arginine (10 mM), a substrate of nitric oxide synthase, nor by calcium ionophore A23187 $(7{\mu}M)$. Forskolin, an activator of adenylate cyclase, which enhanced iNOS induction at transcriptional level, completely reversed the inhibitory action of CsA on nitrite accumulation. However, PMA (2 nM) and PDB (50 nM), PKC activators, increased the inhibitory action of CsA on nitrite accumulalion. From these results, it is suggested that cyclic AMP-elevating agents may be candidates of therapeutic agents in prevention and treatment of renal toxicity and arterial hypertension induced by CsA. Among conventional antihypertensive drugs, calcium channel blockers and ${\alpha}-blockers$ are preferred to ${\beta}-blockers$.

  • PDF

EFFICACY EVALUATION OF THE WHITENING COSMETICS USING MELANOGENESIS INHIBITION ASSAY COSMETICS IN B-16 MELANOMA CELL

  • S. J. Yang;S. J. Jang;Park, S. S.;J. Y. Jang;K. H. Son;Lee, J. P.;Lee, K. S.;M. Y. Heo;Kim, Y. O.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.544-544
    • /
    • 2003
  • We investigated the inhibitory effect of whitening materials with growth factor or alone on melanomas derived from Human (B-16) and mouse (SK-MEL-31) using melanin content. Melanin content was determined by the absorbance value at 470nm per cells. we used the growth factors known as activators of Adenylate cyclase, Protein kinase C and tyrosine kinase pathway separately. In addition, we compared the action of UV-induced with non-biological growth factor with whitening materials in melanomas derived from Human and mouse. The results showed that the aspect of inhibitory effect of whitening materials on B16 and SK-MEL-31 was not different. And, the action of each growth factor involved in the differentiation and proliferation of melanoma on the inhibition of melanogenesis in B-16 and SK-MEL-31 using whitening agents showed no difference. Also, The action of UV -induced and non-biological growth factors didn't exhibit different pattern on the effect of whitening agent in B-16 and SK-MEL-31.

  • PDF

Inhibitory effects of Cnidium officinale extracts on $\alpha-MSH$ induced melanogenesis

  • Lee, Ghang-Tai;Lee, Jeong-No;Lee, Kwang-Sik;Jeong, Ji-Hean;Jo, Byoung-Kee
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.44-49
    • /
    • 2003
  • $\alpha$-MSH plays an important role in UV induced melanogenesis in human skin. It is believed to exert its effects by binding to $\alpha$-MSH receptor that in turn activates adenylate cyclase and increase melanocyte proliferation, dendricity and melanogenesis. In this study, we evaluated plant extracts showing the inhibitory activity on $\alpha$-MSH induced melanogenesis. The Cnidium officinale extracts showed high inhibitory activity on $\alpha$-MSH induced melanogenesis. It ($50{\mu}\textrm{g}$/ml) inhibited the melanin synthesis activated by $\alpha$-MSH in B-16 melanoma cells. Also, we isolated active compound from C. officinale extracts by Mass spectrophotometer, HPLC. It was identified as Senkyunolide A. It showed the same inhibitory activity as C. officinale extracts at the lower concentration. Finally, Senkyunolide A from Cnidium officinale extracts could playas $\alpha$-MSH antagonist and be used as a strong ingredient for skin whitening cosmetics.

  • PDF

Role of G-protein in the Contraction of Rabbit Trachealis Muscle (토끼 기관평활근 수축에서 G Protein의 역할)

  • Jung, Jin-Sup;Hwang, Tae-Ho;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.353-362
    • /
    • 1990
  • Fluoride (F-), a known stimulator of G-protein, induced strong contraction in rabbit trachealis muscle. $AlCl_3\;(5{\sim}20\;{\mu}M)$, which is required for G-protein stimulation by $F^-$, potentiated the contractile response to $F^-$. $Ca^{2+}-removal$ and verapamil, a calcium channel blocker, inhibited the fluoroaluminate-induced contraction. Fluoroaluminate increased $^{45}Ca$ influx in the absence and presence of verapamil. In heparin-loaded muscle high $K^+-induced$ contraction was not affected, but acetylcholine and fluoroaluminate-induced contractions were inhibited. The fluoroaluminate-induced contraction was partially relaxed by isoproterenol, a stimulator of adenylate cyclase. Pertussis toxin partially inhibited fluoroaluminate-induced contraction and potentiated isoproterenol-induced relaxation in the presence of fluoroaluminate, but had no effect on acetylcholine-induced contraction and the isoproterenol-induced relaxation in the presence of acetylcholine. These results suggest that fluoroaluminate has the ability to stimulate at least two putative G-proteins in rabbit trachealis muscle; One causes $Ca^{2+}$ influx through the potential-operated $Ca^{2+}$ channel and the other induces intracellular $Ca^{2+}$ release by the increase of inositol-1, 4, 5-triphosphate.

  • PDF

[$PGE_2$ Regulates Pacemaker Currents through $EP_2-Receptor$ in Cultured Interstitial Cells of Cajal from Murine Small Intestine

  • Choi, Seok;Cho, Kyung-Won;Reu, Jong-Hyun;Kim, Jun-Soo;Mun, Hyun-Sik;Kim, Myung-Young;Park, Kwang-Chul;Heo, Gwang-Sik;Chang, Sung-Jong;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.153-159
    • /
    • 2004
  • The interstitial cells of Cajal (ICCs) are the pacemaker cells in gastrointestinal tract and generate electrical rhythmicity in gastrointestinal muscles. Therefore, ICC may be modulated by endogenous agents such as neurotransmitter, hormones, and prostaglandins (PGs). In the present study, we investigated the effects of prostaglandins, especially $PGE_2$, on pacemaker currents in cultured ICCs from murine small intestine by using whole-cell patch clamp techniques. ICCs generated spontaneous slow waves under voltage-clamp conditions and showed a mean amplitude of $-452{\pm}39\;pA$ and frequency of $18{\pm}2$ cycles/min (n=6). Treatments of the cells with $PGE_2$ $(1\;{\mu}M)$ decreased both the frequency and amplitude of the pacemaker currents and increased the resting currents in the outward direction. $PGE_2$ had only inhibitory effects on pacemaker currents and this inhibitory effect was dose-dependent. For characterization of specific membrane EP receptor subtypes, involved in the effects of $PGE_2$ on pacemaker currents in ICCs, EP receptor agonists were used: Butaprost $(1\;{\mu}M)$, $EP_2$ receptor agonist, reduced the spontaneous inward current frequency and amplitude in cultured ICCs (n=5). However sulprostone $(1\;{\mu}M)$, a mixed $EP_1$ and $EP_3$ agonist, had no effects on the frequency, amplitude and resting currents of pacemaker currents (n=5). SQ-22536 (an inhibitor of adenylate cyclase; $100\;{\mu}M$) and ODQ (an inhibitor of guanylate cyclase; $100\;{\mu}M$) had no effects on $PGE_2$ actions of pacemaker currents. These observations indicate that $PGE_2$ alter directly the pacemaker currents in ICCs, and that the $PGE_2$ receptor subtypes involved are the $EP_2$ receptor, independent of cyclic AMP- and GMP-dependent pathway.

Inhibitory Effects of Naeso-san on Pacemaker Potentials in Interstitial Cells of Cajal of Murine Small Intestine (생쥐 소장 카할세포의 내향성 향도잡이 전압에 미치는 내소산의 억제효과에 관한 연구)

  • Hong, Noo Ri;Ahn, Tae Seok;Park, Hyun Soo;Chae, Han;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.630-635
    • /
    • 2014
  • The purpose of this study was to investigate the effects of Naeso-san in interstitial cells of Cajal (ICCs) in murine small intestine. First, we isolated ICCs from murine small intestine. After that, we cultured these cells for 1 days. The patch-clamp technique was applied on ICCs that formed network-like structures in culture (1 days). Spontaneous rhythms were routinely recorded from cultured ICCs under current-clamp conditions, and the ICCs within networks displayed more robust electrical rhythms (pacemaker potentials). To understand the relationship between Naeso-san and pacemaker activity in ICCs, we examined the effects of Naeso-san on pacemaker potentials of ICCs. In current clamp mode (I = 0), the addition of Naeso-san (10 mg/ml - 50 mg/ml) decreased the amplitude and frequency of the pacemaker potentials of ICCs in a dose dependent manner. However, these effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor, and glibenclamide, a specific ATP-sensitive K+ channels blocker. Pretreatment with SQ-22536, an adenylate cyclase inhibitor, did not block the Naeso-san induced effects, whereas pretreatment with ODQ, a guanylate cyclase inhibitor, or L-NAME, an inhibitor of nitric oxide (NO) synthase blocked the Naeso-san induced effects. Our findings provide insight into unraveling the modulation of Naeso-san in pacemaker potentials of ICCs and developing therapeutic agents against gastrointestinal motility disorders.

Non-Adrenergic Non-Cholinergic Responses of Gu mea- Pig Tracheal Smooth Muscle (기니피그 기도 평활근의 비아드레날린성 비꼴린성 반응에 관한 연구)

  • Jo, Eun-Yong;Choe, Hyeong-Ho;Jeon, Je-Yeol
    • Journal of Chest Surgery
    • /
    • v.29 no.5
    • /
    • pp.487-494
    • /
    • 1996
  • The neurogenic responses of tracheal smooth muscles to electrical field stimulation (EFS) is biphasic, consisting firstly of cholinergic contraction followed by a slow and sustained relaxation. It is well known that a sustained relaxation involves the inhibitory non-adrenergic non-cholinergic systems. This study was done to Investigate the relaxing agents and their action mechanisms by use of an organ bath with plati- ilum . The tracheal smooth muscle relaxation due to EFS was suppressed by L-NAME, the WO (Nitric Oxide) synthase inhibitor, and these effects were reversed by L-arginine, the precursor of NO. Also, L-WAME (HG-nitro-L-arginine methyl ester) increased the basal tension. Nitroprusside, the NO-donor, suppressed the tracheal basal tension greatly. Methylene blue, the inhibitor of guanylate cyclase, decreased EFS-induced relaxations and increa ed basal tension. Forskolin and isoprenaline, which are activators of adenylate cyclase, suppressed tracheal basal tension in the same way as nitroprusside. TEA (tetraethylammonium), the non-specific K'channel blocker, and apamin, the Ca"-activated K'channel blocker, increased tracheal basal tension and EFS-induced relaxations. Our results indicate that Pr3 Is released upon stimulation of the NANC (Won Adrenergic Won Cholinergic) nerves in guinea-pig tracheal smooth muscle and that the release of NO related with the K+ channel, as well as the release of other inhibitory agents< e. g.)VIP (Vasoactive Intestinal Polypeptide), PHI (Peptide Histidine Isoleusine) > mediated via CAMP (cyclic Adenosine Monophosphate) may be Involved In sustained relaxation.

  • PDF