Regulation of ERK1/2 by the C. elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells

  • Kim, Seungwoo (School of Life Sciences, Chungbuk National University) ;
  • Shin, Youngmi (School of Life Sciences, Chungbuk National University) ;
  • Shin, Youngju (School of Life Sciences, Chungbuk National University) ;
  • Park, Yang-Seo (School of Life Sciences, Chungbuk National University) ;
  • Cho, Nam Jeong (School of Life Sciences, Chungbuk National University)
  • Received : 2007.10.04
  • Accepted : 2008.02.05
  • Published : 2008.06.30

Abstract

Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Bonner, T.I., Buckley, N.J., Young, A.C., and Brann, M.R. (1987). Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527-532 https://doi.org/10.1126/science.3037705
  2. Bonner, T.I., Young, A.C., Brann, M.R., and Buckley, N.J. (1988). Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403-410 https://doi.org/10.1016/0896-6273(88)90190-0
  3. Crespo, P., Xu, N., Simonds, W.F., and Gutkind, J.S. (1994). Ras-dependent activation of MAP kinase pathway mediated by G-protein ${\beta}\;{\gamma}$ subunits. Nature 369, 418-420 https://doi.org/10.1038/369418a0
  4. Gutkind, J.S. (1998). The pathways connecting G proteincoupled receptors to the nucleus through divergent mitogenactivated protein kinase cascades. J. Biol. Chem. 273, 1839-1842 https://doi.org/10.1074/jbc.273.4.1839
  5. Houslay, M.D., and Kolch, W. (2000). Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol. Pharmacol. 58, 659-668 https://doi.org/10.1124/mol.58.4.659
  6. Hwang, J.M., Chang, D.-J., Kim, U.S., Lee, Y.-S., Park, Y.-S., Kaang, B.-K., and Cho, N.J. (1999). Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptors Channels 6, 415-424
  7. Jimenez, E., Gamez, M.I., Bragado, M.J., and Montiel, M. (2002). Muscarinic activation of mitogen-activated protein kinase in rat thyroid epithelial cells. Cell. Signal. 14, 665-672 https://doi.org/10.1016/S0898-6568(02)00010-4
  8. Lee, Y.-S., Park, Y.-S., Chang, D.-J., Hwang, J.M., Min, C.K., Kaang, B.-K., and Cho, N.J. (1999). Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 72, 58-65 https://doi.org/10.1046/j.1471-4159.1999.0720058.x
  9. Lee, Y.-S., Park, Y.-S., Nam, S., Suh, S.J., Lee, J., Kaang, B.-K., and Cho, N.J. (2000). Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 75, 1800-1809 https://doi.org/10.1046/j.1471-4159.2000.0751800.x
  10. Liu, Y., LeBoeuf, B., and Garcia, L.R. (2007). G${\alpha}$q-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J. Neurosci. 27, 1411-1421 https://doi.org/10.1523/JNEUROSCI.4320-06.2007
  11. Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185 https://doi.org/10.1016/0092-8674(95)90401-8
  12. Min, D.S., Cho, N.J., Yoon, S.H., Lee, Y.H., Hahn, S.-J., Lee, K.-H., Kim, M.-S., and Jo, Y.-H. (2000). Phospholipase C, protein kinase C, $Ca^{2+}$/calmodulin-dependent protein kinase II, and tyrosine phosphorylation are involved in carbachol-induced phospholipase D activation in Chinese hamster ovary cells expressing muscarinic acetylcholine receptor of Caenorhabditis elegans. J. Neurochem. 75, 274-281 https://doi.org/10.1046/j.1471-4159.2000.0750274.x
  13. Nathanson, N.M. (1987). Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci. 10, 195-236 https://doi.org/10.1146/annurev.ne.10.030187.001211
  14. Park, Y.-S., Kim, S., Shin, Y., Choi, B., and Cho, N.J. (2003). Alternative splicing of the muscarinic acetylcholine receptor GAR-3 in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 308, 961-965 https://doi.org/10.1016/S0006-291X(03)01508-0
  15. Park, Y.-S., Cho, T.-J., and Cho, N.J. (2006). Stimulation of cyclic AMP production by the Caenorhabditis elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Arch. Biochem. Biophys. 450, 203-207 https://doi.org/10.1016/j.abb.2006.03.022
  16. Pearson, G., Robinson, F., Gibson, T.B., Xu, B.-E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183 https://doi.org/10.1210/er.22.2.153
  17. Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J., and Capon, D.J. (1988). Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434-437 https://doi.org/10.1038/334434a0
  18. Slack, B.E. (2000). The m3 muscarinic acetylcholine receptor is coupled to mitogen-activated protein kinase via protein kinase C and epidermal growth factor receptor kinase. Biochem. J. 348, 381-387 https://doi.org/10.1042/0264-6021:3480381
  19. Steger, K.A., and Avery, L. (2004). The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167, 633-643 https://doi.org/10.1534/genetics.103.020230
  20. Stork, P.J.S., and Schmitt, J.M. (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258-266 https://doi.org/10.1016/S0962-8924(02)02294-8
  21. Wotta, D.R., Wattenberg, E.V., Langason, R.B., and El-Fakahany, E.E. (1998). M1, M3 and M5 muscarinic receptors stimulate mitogen-activated protein kinase. Pharmacology 56, 175-186 https://doi.org/10.1159/000028196
  22. Wylie, P.G., Challiss, R.A.J., and Blank, J.L. (1999). Regulation of extracellular-signal regulated kinase and c-Jun N-terminal kinase by G-protein-linked muscarinic acetylcholine receptors. Biochem. J. 338, 619-628 https://doi.org/10.1042/0264-6021:3380619
  23. You, Y. J., Kim, J., Cobb, M., and Avery, L. (2006). Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab. 3, 237-245 https://doi.org/10.1016/j.cmet.2006.02.012