• Title/Summary/Keyword: Additive Algorithm

Search Result 306, Processing Time 0.03 seconds

Tuning Fuzzy Rules Based on Additive-Type Fuzzy System Models

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • In this paper, we suggested a neuro-fuzzy learning algorithm for tuning fuzzy rules, in which a fuzzy system model is of additive-type. Using the method, it is possible to reduce the computation size, since performing the fuzzy inference and tuning the fuzzy rules of each fuzzy subsystem model are independent. Moreover, the efficiency of suggested method is shown by means of a numerical example.

  • PDF

RLS Adaptive IIR Filters Based on Equation Error Methods Considering Additive Noises

  • Muneyasu, Mitsuji;Kamikawa, Hidefumi;Hinamoto, Takao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.215-218
    • /
    • 2000
  • In this paper, a new algorithm for adaptive IIR filters based on equation error methods using the RLS algorithm is proposed. In the proposed algorithm, the concept of feedback of the scaled output error proposed by tin and Unbehauen is employed and the forgetting factor is varied in adaptation process for avoiding the accumulation of the estimation error for additive noise . The proposed algorithm has the good convergence property without the parameter estimation error under the existence of mea-surement noise.

  • PDF

Iterative Image Restoration Algorithm Using Power Spectral Density (전력밀도 스펙트럼을 이용한 반복적 영상 신호 복원 알고리즘)

  • 임영석;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.713-718
    • /
    • 1987
  • In this paper, an iterative restoration algorithm from power spectral density with 1 bit sign information of real part of two dimensional Fourier transform of image corrupted by additive white Gaussian noise is proposed. This method is a modified version of image reconstruction algorithm from power spectral density. From the results of computer simulation with original 32 gray level imgae of 64x64 pixels, we can find that restorated image after each iteration converge to original image very fast, and SNR gain be at least 8[dB] after 10th iteration for corrupted image with additive white Gaussian noise.

  • PDF

Enhanced Normalized Subband Adaptive Filter with Variable Step Size (가변 스텝 사이즈를 가지는 개선된 정규 부밴드 적응 필터)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • In this paper, we propose a variable step size algorithm to enhance the normalized subband adaptive filter which has been proposed to improve the convergence characteristics of the conventional full band adaptive filter. The well-known Kwong's variable step size algorithm is simple, but shows better performance than that of the fixed step size algorithm. However, in case that large additive noise is present, the performance of Kwong's algorithm is getting deteriorated in proportion to the amount of the additive noise. We devised a variable step size algorithm which does not depend on the amount of additive noise by exploiting a normalized adaptation error which is the error subtracted and normalized by the estimated additive noise. We carried out a performance comparison of the proposed algorithm with other algorithms using a system identification model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments.

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

An Improvement of UMP-BP Decoding Algorithm Using the Minimum Mean Square Error Linear Estimator

  • Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2004
  • In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.

  • PDF

A Generalized Subtractive Algorithm for Subset Sum Problem (부분집합 합 문제의 일반화된 감산 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • This paper presents a subset sum problem (SSP) algorithm which takes the time complexity of O(nlogn). The SSP can be classified into either super-increasing sequence or random sequence depending on the element of Set S. Additive algorithm that runs in O(nlogn) has already been proposed to and utilized for the super-increasing sequence SSP, but exhaustive Brute-Force method with time complexity of O(n2n) remains as the only viable algorithm for the random sequence SSP, which is thus considered NP-complete. The proposed subtractive algorithm basically selects a subset S comprised of values lower than target value t, then sets the subset sum less the target value as the Residual r, only to remove from S the maximum value among those lower than t. When tested on various super-increasing and random sequence SSPs, the algorithm has obtained optimal solutions running less than the cardinality of S. It can therefore be used as a general algorithm for the SSP.

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.

  • PDF

Direction Information Concerned Algorithm for Removing Gaussian Noise in Images

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.758-762
    • /
    • 2011
  • In this paper an efficient algorithm is proposed to remove additive white Gaussian noise(AWGN) with edge preservation. A function is used to separate the filtering mask to two sets according to the direction information. Then, we calculate the mean and standard deviation of the pixels in each set. In order to preserve the details, we also compare standard deviations between the two sets to find out smaller one. Corrupted pixel is replaced by the mean of the filtering window's median value and the smaller set's mean value that the rate of change is faster than the other one. Experiment results show that the proposed algorithm outperforms with significant improvement in image quality than the conventional algorithms. The proposed method removes the Gaussian noise very effectively.

An Edge Detection Algorithm using Modified Mask in AWGN Environment (AWGN 환경에서 변형된 마스크를 이용한 에지 검출 알고리즘)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.892-894
    • /
    • 2013
  • Edge has been utilized in various application fields with development of technique of digital image processing. In conventional edge detection methods, there are some methods using mask including Sobel, Prewitt, Roberts and Laplacian operator. Those methods are that implement is simple but generates errors of edge detection in images added AWGN(additive white Gaussian noise). Therefore, to compensate the defect of those methods, in this paper, an edge detection algorithm using modified mask is proposed, and it showed superior edge detection property in AWGN.

  • PDF