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Abstract

In this papcr, we suggested a ncuro-fuzzyv lcarning algorithm for tuning {uzzy rules, in which a fuzzy system
model is of additive-type. Using the method. it is possible to reduce the computation size. since performing the fuzzy
mference and tuning the fuzzy rules for cach fuzzy subsystem model are independent. Moreover, the efficiency of
suggested method is shown by means of a numerical example.
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1. Introduction

In recent fuzzy applications, in order 1o construct an
optimal fuzzy system model to identifv a practical
problem. 1t is getting more than important 1o generate
or tunc fuzzy rules by means some of lcarning
techmques. such as neuro-fuzzy methods proposed by
Ichihashi [2]. Shi et al. [4,5], Wang and Mceadel [6].
However, when we deal with a large scale fuzzy system
model, learning fuzzy rules is sonetimes hard by using
the conventional learning methods directly. because of
the complexity of the fuzzy system model and the great
number of the tuning parameters. In this paper, we
suggest a ncuro-fuzzy learning algorithm. in which the
fuzzy system model is of additive-tvpe. Using the
method. it is possible that the computation size will
become small. since performing the fuzzy inference and
tuning the fuzzy rules for each fuzzy subsystem model
are independent. Also, we show the efficiency of
suggested method by a numerical example.

2. Additive-type fuzzy system models

First we briefly introduce so-called additive-type
fuzzy system models.
Definition 1: Let f be a mapping from the input
universe X' (=X} XX, X X' ) to the output universe Y.
if there exist two sub-mappings /@ X, X XA [> 1
and f,: X, X... XX |—Y, such that /can be expressed
asumof f, and /.. then we call y* = flx, x... .x ) (x, X,
i=1.2....n. y*¥=T) an additive-type system. which can
be written as:
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Let x|. x,, ...,x_be input variables on .\" and v be an
output variable on Y, then fuzzy infcrence rules

corresponding (o the desired system y* = fix; .x,,....x )
are arranged as follows:
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where A" (jre:{1.2.... k1}. 1=1,2,...n) is a fuzzy sct on
the /i-th input space X Vi Gy 15 @ real number on
the output universe Y, and ki (i=1,2,...,n) is the number
of fuzzy partitions for the input variable x._

When an observation (x,x,,....x,) is given, a fuzzy
inference consequence v can be obtained by using
simplified fuzzy rcasoning method as:
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Definition 2: If a given system y* = f/(x,x,....x,) +

fz(xm,xm,...,x“) is of additive-type, then we call the
corresponded fuzzy system made by Eq.(2) and Eq.(3)
an additive-type fuzzy system.

For such a additive-type fuzzy system modecl . we
have the following result. which has been proved by Shi
et al. [3}. Yam [7}.

Theorem 1: If a fuzzy system model is of additive-type,
then the fuzzy inference consequence y in Eq.(3) can be
obtained as follows:
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where /, (j=12) 1s called a fuzzy subsystem model,

1
Y Is a recal number of the consequent parts
corresponding to the fuzzy subsystem model 7, and

"

Y o, .. 1 @ real number of the consequent parts

corresponding to the fuzzy subsystem model /,, subject

1 2

to the condition ¥, = 1oy =V 1, iy +Y (grn, oy

By using the Theorem 1, one can see that the
additive-type fuzzy system model becomes simple, and
it is possible to perform a fuzzy inference for each
dissolved fuzzy subsystem model independently, so that
the computation size will become small, and that, it is
also convenient for the user to design such fuzzy system
model in the practical applications.

3. Tuning fuzzy rules based on an additive-type fuzzy
system model

In this section, we shall denive a neuro-fuzzy
learning algonthm for tuning fuzzy rules under an
additive-type fuzzy system model with Gaussian-type
membership functions, based on gradient descent
method {1}.

For the sake of technical simplification, we assume
that the identified system has four input variables and
one output variable, such as y* = f (x,x,)) + [(x,.x,),
then by the Theorem 1, a fuzzy inference consequence
y can be obtained as follows:

ki k2

2 A DA () p pkaeg
=1 y<l

k1l k2

2 A(x)A, ()
o £

kY k4
A7 () A, (x) Y imtyikasn

m=) ne

+

k1 k2

Z;A,’(x,)Azj(xz)

=1+, )

In this situation. the neural networks made by the
additive-type fuzzy system is simple, for example, as
shown in Fig. 1 when k1 = k2 = k3 = k4 = 2, where hlJ
(+=1....4; j=1,2) denotes an agreement of the antecedent
parts corresponding to the fuzzy subsystem mode ]J
(0=1,2 ). and y means a fuzzy inference consequence.
On the other hand. in the case of an usual system y =
Sxx,.x,.x,) with the same membership functions as

well as Fig. 1, the conventional neural networks made
by a fuzzy system model can bc expressed as shown in
Fig. 2, where, h,_(k=1.2,...16) stands for an agreement

of the antecedent parts.

Input layer Output layer
Fig. 1 Neural networks by an additive-type fuzzy system

Hidden layer

Fig. 2 Neural networks bv a normal fuzzy system

To compare Fig. 1 with Fig. 2. one can see that the
constructions of two kinds of neuro-fuzzy approaches
are very different, so we can say that the suggested
fuzzy inference approach is useful tool for designing a
simple neuro-fuzzy system model. :

Moreover, Gaussian-type membership functions on
the antecedent parts are defined as:

A,P x)= exp(-(x,- alﬁ)z/hly) )
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where alp (i=1.2,3,4; jic= {1.2..._ki}) is the center ofA:'.
bl'” means the width of A ]J'.

When training input-output data (x, x, x, x,; ¥ ) are

given for the fuzzy system model. we adopt the

following objective function [ to evaluate the error

between y* and y:

E=0*-y) 12 7

where y* is a desired output value, and y is a fuzzy
inference result.

In order to minimize the objective function E, based
on gradient descent method [1] and the method by Shi
et al [4,5], a learming algorithm for updating the

J i .
parameters a]'. b ’, a;. , and v (i=12,....kl;

1
j=1,2,...,k2) is derived as follows:
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where o. /4 and » are the learning rates, and 7
means the learning iteration.
Similarly. we can derlve a learmng algonthm for

= y‘(i—l)k2u(’)+

updating the parameters a, , b3n, b " and v (Yt

(m=1,2,..Kk3; n—1,2,.A.,k4) in the same way.

4. Numecrical example

In the sequel, we apply the suggested learning
approach to the following nonlinear additive-type
system with four input variables and one output variable
for identifying and evaluating the problem, and show
the efficiency of the suggested method.

Example:
2 2
V&= (2x,+ax, +0.1) 37.214{[Bexp(3x,)
+2 exp (-4x,)] " -0.077}/4.68 (13)

where x & [-1,1] (i=1,...,4) is the input variable, and y &
[0,1] is a normalized output variable.

To construct a corresponded additive-type fuzzy
system model for the Example, first we assume that
there exist five Gaussian-type mcmbcrshxp functions on

cach input space, and the real numbers y @154y and v (-

Dsen (1.J.m,n=1, .., 5) are set as shown in Eq.(14). subject

to the condition Vijmm = y gt y ()54

2

Y (1-1)5+45 = 0. Y (m-1)5+4n =0 (14)

Then. 20 training data (x,x,.x,x,; y*) are employed
randomly for identifving the Example by using the
lcarning algorithm Eqs.(8)-(12). In our case. the
learning rates arc takenas o = 4 =0.05,and » =
0.65 The learning process is stopped when the
inference error for D identifying data is less than the
threshold 4. In this case,d is taken as 0.005. Here. D is
defined as follows:

D= 0*-y)'2 15)

where v*, (d=1,....20) is a desired output valuc, and y,
is a fuzzy inference value.

Table 1 shows fuzzy inference results and desired
output values for given 20 training data (x,,x,,x,.x,. y*)
and Table 2 shows fuzzy inference results and desired
output values for given 20 checking data (x .x,.x,x,.
y¥) to identify the Example by using the fuzzy rules
generated by the suggested learning approach. In our
case, 20 checking data are employed randomly.
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In Table 2, the mean square crror is 0.0063, the
maximmum absolute error is 0.1618, which shows finer
approximate results by using the suggested learning
approach for the given checking data. Therefore, we
can say that the suggested approach is an cfficient
lcarmng algorithm for tuning fuzzy rules when the
fuzzy system model is of additive-type.

S. Conclusions

We have suggested an efficient neuro-fuzzy learning
approach for tuning fuzzy rules when a fuzzy system
model is of additive-type. By the method, it is possible
to reduce the computation size in the neural processing
system of {fuzzy applications.
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Table 1 Training data for ldentifying the Example

*

No. x| Y X3 X4 y y
1 -0.24 | -0.62 0.50 1.00] 0.1470 | 0.1396
2 -0.18 020 0121 -0.72 } 0.2465 | 0.2313
3 1-014] 020 064 08602772 | 0.2904
4 -().92 0.42 1 6801 -092 102368 | 0.2371
5 014 1 -0.32 1 -0.38 0.98 | 0.5629 | 0.5643
6 -0.48 072 -0.14 1 -0.52 | 0.0645 | 0.0798
7 0.98 | -0.50 1 -0.36 | -0.96 | 0.2660 | 0.2690
8 -0.78 ().84 .44 1 -0.92 | 0.0767 | 0.0731
9 -0.42 | -0.78 (.36 | -0.10 | 0.0568 | 0.0609
10 048 0201 -0.18 | -0.18 } 0.5556 | 0.5561
11 0341 -086 1 -08) | -024 1 0.3953 | 0.3950
12 0.24 .46 | 030 0.12 1 0.5128 | 0.5108
13 { -0.66 | -0.38 0721 022101080 § 0.1016
14 0.90 | -0.72 0061 -0.70 | 0.2673 ] 0.2622
15 | -0.62 | -0.82 022 | -0.88 | 0.0332 | 0.0460
16 | -0.84 | -0.54 0001 -0.78 1 0.1736 | 0.1723
17 0.86 | -0.14 0.74 0.92 | 0.4205 | 0.4179
18 | -0.56 | -0.76 0.78 | -0.90 | 0.0300 | 0.0290
19 | -0.74 0.46 1 -0.66 0.00 | 0.2600 | 0.2624
20 | -0.86 | -0.18 0.08 | -0.32 102974 | 0.2961
Table 2 Checking data for Identifying the Example

No. X X2 X X4 y* v
1 -0.96 0.30 { -0.26 0.68 § 0.4357 | 0.2739
2 0.36 0.22 0141 -026 [ 05154 { 04911
3 -0.02 1 014 036 0.16 ] 0.3501 | 0.2974
4 -0.98 0161 008 -024 | 0.3672 | 0.3463
5 -0.44 | 074 0.56 ] -0.90 | 0.0354 { 0.0330
6 0.40 D08 | 0181 0.12 ] 0.5573 | 0.5549
7 -0.44 0301 -050[-094 101418 | 0.0918
8 -0.54 0.06 1 092 -0521]0.1769 | 0.0885
9 0.30 | -0.88 1 -0.84 | -0.20 | 0.3895 | 0.3798
10 | -0.24 0.82 0.00 1 0.74 1 0.1704 ] 0.1039
11 0661 0.62 050 -0.34{0.3953 | 0.2568
12 0421 064 ] -0.061 092] 04931 | 0.3739
13 0201 -0.18 | -0.80 | -0.92 | 0.4258 | 0.3963
14 | 060 | -0064 1 -038 ([ 05002789 | 0.1216
15 | -0.44 0.74 ] 058 | -0.46 | 0.0718 | 0.0546
16 | -0.88 0001 064 ] -028 ) 0.3389 | 0.2932
17 | 0.78 026 ] -032 1 -0.58 | 0.2304 | 0.1433
18 0.16 | -0.88 0861 042102702 ] 0.2555
19 020} 046 | -0.86 | -0.48 | 0.4229 { 0.3686
20 ] 072 0.90 | -0.36 0.86 | 0.2312 | 0.3232




