• Title/Summary/Keyword: Addition-Elimination

Search Result 330, Processing Time 0.039 seconds

Reactions of Iron Alkynyl(Ethoxy)Carbene Complexes with Amines (철 알킨일(에톡시)카르벤 착물 유도체와 아민의 반응)

  • Park, Jaiwook;Kim, Jinkyung;Jung, Hyunmin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.571-578
    • /
    • 1996
  • Iron alkynyl(amino)carbene complexes, (${\beta}$-aminovinyl)carbene complexes, ${\eta}^3$-(2-(alkylcarbonyl)vinyl)carbene complexes, and a 3-aminoallenylidene complex were formed in the reactions of iron alkynyl(ethoxy)carbene complexes with amines. The ratio of the products, which were formed by substitution reaction, the Michael addition of amines, rearrangements after the addition reaction, and the addition followed by the elimination of the ethoxy group, respectively, was dependent on reaction temperature, the substituent of the alkynyl moiety, and employed amines.

  • PDF

Characterization of Calcium-Activated Bifunctional Peptidase of the Psychrotrophic Bacillus cereus

  • Kim Jong-Il;Lee Sun-Min;Jung Hyun-Joo
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, $60^{\circ}C$. The endopeptidase activity was stimulated by $Ca^{++},\;Co^{++},\;Mn^{++},\;Mg^{++},\;and\;Ni^{++}$, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM $Ca^{++}$, and was partially restored by $Co^{++}\;and\;Mn^{++}$, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of $Ca^{++}$ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the $K_m$ value of endopeptidase is 0.315 mM and $V_{max}$ is 0.222 ) is $0.222\;{\mu}mol$ of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity.

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additive and Various pH Conditions (II) (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프 표백효과(2)-첨가제가 chlorate 생성량의 감소와 펄프 표백 효과에 미치는 영향)

  • 윤병호;왕립군
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.49-57
    • /
    • 1999
  • In CLO2 delignification and bleaching process, formation of chlorate corresponds to a loss of 20-36% of the original CKO2 charge. Because chlorate is inactive and harmful to environmental, it will be of benefit to find methods that can reduce the formation of chlorate during chlorine dioxide bleaching. Chlorate is mainly formed by the reaction HCIO +ClO2 $\longrightarrow$H+ + Cl_ +ClO3-2 On the other hand, AOX in chlorine dioxide bleacing is formed also due to the in-situ produced hypochlorous acid. THus both AOX and chlorate could be reduced by addition of hypochlorous acid. Some paper son the reduction of AOX by additives appeared , but systematic data on chlorate reduction as well as pulp and effluent properties are not available. THus this paper of focused on the effects on the reduction of chlorate and chlorine dioxide bleachability. The additives, fulfamic a챵, AMSO, hydrogen peroxide, oxalic acid were found to eliminate chlorine selectively in chlorine and chlorine dioxide mixture.However, when they were added to bleaching process, sulfamic acid and DMSO showed significant reduction of chlorate formation but hydrogen peroxide and oxalic aicd did not, and significant amount ofhydrogen peroxide was found resided in the bleaching effluent , In addition, sulfamic acid and DMSO decreased the bleaching end ph values while hydrogen peroxide and oxalic acid did not, which also indicated that hydrogen peroxide and oxalic acid were ineffective. The difference might be ascribed to the competitives of hypochlorous acid with lignin, chlorite (CKO2) and additives. Sulfamic acid and DMSO showed better pulpbrightness development but less alkaline extraction efficiency than hydrogen peroxide , oxalic acid and control, which means that insitu hypochlorous acid contributes to the formation of new chromophore structures that can be easily eliminated by alkaline extraction. DMSO decreased the delignification ability of chlorine dioxide due to the elimination of hypochlorous acid, but sfulfamic acid did to because the chlroinated sulfamic acid had stable bleachability. In addition, sulfamic acid, and SMSO shwed decreased color and COD of bleaching effluents, hydrogen peroxide decreased effluent color but not COD content, and oxalic acid had no statistically significant effects. No significant decreases of pulp viocosity were found except for hydrogen peroxide. Based on our results , we suggest that the effectiveness of hydrogen peroxide on the reduction of AOX in literature might be explained by other mechanisms not due to the elimination of hypochlorous acid , but to the direct decomposition of AOX by hydrogen peroxide.

  • PDF

Prediction of the employment ratio by industry using constrainted forecast combination (제약하의 예측조합 방법을 활용한 산업별 고용비중 예측)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.257-267
    • /
    • 2020
  • In this study, we predicted the employment ratio by the export industry using various machine learning methods and verified whether the prediction performance is improved by applying the constrained forecast combination method to these predicted values. In particular, the constrained forecast combination method is known to improve the prediction accuracy and stability by imposing the sum of predicted values' weights up to one. In addition, this study considered various variables affecting the employment ratio of each industry, and so we adopted recursive feature elimination method that allows efficient use of machine learning methods. As a result, the constrained forecast combination showed more accurate prediction performance than the predicted values of the machine learning methods, and in particular, the stability of the prediction performance of the constrained forecast combination was higher than that of other machine learning methods.

Chemical Reactivity of Ti+ within Water, Dimethyl Ether, and Methanol Clusters

  • Koo, Young-Mi;An, Hyung-Joon;Yoo, Seoung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.197-204
    • /
    • 2003
  • The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.

Effect of NADH-Dependent Enzymes Related to Oxygen Metabolism on Elimination of Oxygen-Stress of Bifidobacteria (NADH요구 산소대사관련 효소가 bifidobacteria의 산소스트레스 제거에 미치는 영향)

  • Ahn, Jun-Bae;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.951-956
    • /
    • 2005
  • Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.

A Study on Elimination of Captan Residues Sticked on Spinach (시금치에 부착시킨 Captan의 제거에 관한 연구)

  • 정인철;차경숙;임채원;김성준;문윤희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.214-218
    • /
    • 1995
  • Elimination of residual captan during the storage and cooking process was investigated. The concentration of residual captan after sticking and drying fo captan on spinach was 2.938ppm. During storage of 5, 10, 15 and 20 days at 15$^{\circ}C$, the amount of residual captan decreased to 73.18, 80.80, 89.99 and 98.40% of the initial amount, respectively. When spinach was stored at 3$^{\circ}C$, the concentration of residual captan decreased to 58.20, 61.37, 72.84 and 76.31% and the storage was carried out at -17$^{\circ}C$, residual captan amount decreased to 7.18, 22.67, 34.58 and 40.91% of the initial amout, respectively according to the storage period. In the case of the residual captan of seasoned spinach, the storage of 2, 24 and 48 hours at 15$^{\circ}C$, the amout of residual captan decreased to 0.772(39.69%), 0.661(77.50%) and 0.063ppm(97.86%) of the initial amount, respectively. When spinach was stored at 3$^{\circ}C$, the amount of residual captan decreased to 2.344 (20.22%), 1.021(65.25%) and 0.329ppm(88.80%) and the storage was carried out at -17$^{\circ}C$, residual captan amount decreased to 2.428(17.36%), 1.520(48.26%) and 0.726ppm(75.29%) of the initial amount, respectively according to the storage period. In the case of the residual captan of spinach cooked with edible oil for 2, 4 and 6 minutes and then cooking oil was discarded, each decreasing rate of the captan sticked to thespinach was 96.29, 97.86 and 99.18%, respectively. The rate of removed the captan sticked to the spinach with oil was 73.32, 86.32 and 87.13%, respectively. From these results, the storage in room temperature and the addition of seasoning to the spinach could lead to decrease in the concentration of the residual captan, furthemore the cooking could inhance decreasing of residual captan.

  • PDF

Inhibitory Effect of Sageretia theezans against the Production of Pro-Inflammatory Mediators through the Inhibition of NF-κB and MAPK, and Activation of Nrf2/HO-1 Signaling Pathways in LPS-Stimulated RAW264.7 cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.98-98
    • /
    • 2018
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, $IL-1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65, which resulted to the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing $NF-{\kappa}B$ and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.

  • PDF

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

BIOLOGICAL EFFECT OF MAGNOLIA AND GINKGO BILOBA EXTRACT TO THE ANTIMICROBIAL, ANTIINFLAMMATORY AND CELLULAR ACTIVITY (후박 및 은행잎 추출물의 향균, 향염 및 세포활성도에 미치는 영향)

  • Chung, Chong-Pyuong;Ku, Young;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.478-486
    • /
    • 1995
  • Periodontal therapy for treatment of periodontitis involves the elimination of bacterial plaque and elimination of the anatomic defects by regenerative procedure. The purpose of this study was to evaluate on the biological effect of magnolia and Ginkgo biloba extract to the antimicrobial, antiinflammatory and cellular activity. Antimicrobial assay was performed with the diffusion method of the extract by measuring of growth inhibitory zone of B. cereus from blood agar plate. Effect of the extract to cellular activity of gingival fibroblast were examined using MTT method and measured the result with optical density on 570nm by ELISA reader. Inhibitory effects of $PGE_2$ production from gingival fibroblast was performed with the addition of $IL-l{\beta}$ and the extract to the well and examined to the product of $PGE_2$ from cell by ELISA reader. In vivo anti-inflammatory effect was performed with injection examined with clinically and histologically for their extent of mecrosis and inflammation. Antimicrobial activity of Magnolia extract showed significantly higher activity than that of control. However, GBE did not showed significant activity to compare with control, and mixture of Magnolia and GBE extract showed significantly higher activity than that of control. The effect of cellular activity to gingival fibroblast showed no significant differences of between control and Magnolia extract. However, GBE showed significantly higher rate of cellular activity to compare with control and even to PDGF-BB, and also showed same degree of cellular activity even though mixed with Magnolia extract. The inhibitory effect of $PGE_2$ production showed significantly reduction of $PGE_2$ production to compare with control, but its inhibitory effect was not much strong to compare with Indomethacin. In vivo, antiinflammatory effect of Magnolia extract to P. gingivalis injection of Hamster buccal check showed significantly reduction of inflammatory cell infiltration and tissue necrosis, but GBE showed no effect on the inhibition of inflammatory process. These results suggested that Magnolia and GBE extract possessed different kind of biological activity and also can be compensated on their activity with each other for elimination of bacterial plaque and anatonical defect.

  • PDF