DOI QR코드

DOI QR Code

Chemical Reactivity of Ti+ within Water, Dimethyl Ether, and Methanol Clusters

  • Koo, Young-Mi (Department of Chemistry and Institute of Basic Science, Wonkwang University) ;
  • An, Hyung-Joon (Department of Chemistry and Institute of Basic Science, Wonkwang University) ;
  • Yoo, Seoung-Kyo (Ace Lab Inc.) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Basic Science, Wonkwang University)
  • Published : 2003.02.20

Abstract

The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.

Keywords

References

  1. Alvarez, E. J.; Wu, H.-F.; Liou, C.-C.; Brodbelt, J. J. Am. Chem. Soc. 1996, 118, 9138.
  2. Zheng, G.; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. 2001, 210-211, 265. https://doi.org/10.1016/S1387-3806(01)00402-X
  3. Siegbahn, P. E. M.; Bloomberg, M. R. A. Chem. Rev. 2000, 100, 421. https://doi.org/10.1021/cr980390w
  4. Dougherty, D. A. Science 1996, 271, 163. https://doi.org/10.1126/science.271.5246.163
  5. Gas Phase Ion Chemistry; Bowers, M. T., Ed.; Academic Press: New York, 1979; vol. 1 and 2.
  6. Byrd, G. C.; Burnier, R. C.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 3565. https://doi.org/10.1021/ja00377a004
  7. Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7509. https://doi.org/10.1021/ja00284a012
  8. Yi, S.-S.; Noll, R. J.; Weisshaar, J. C. J. Phys. Chem. A 1999, 103, 7254. https://doi.org/10.1021/jp991561j
  9. Reicher, E. L.; Weisshaar, J. C. J. Phys. Chem. A 2002, 106, 5563. https://doi.org/10.1021/jp0137827
  10. Yi, S. S.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Weisshaar, J. C. J. Phys. Chem. A 1998, 102, 395. https://doi.org/10.1021/jp972674a
  11. Guo, B. C.; Kerns, K. P.; Castleman, A. W., Jr. J. Phys. Chem. 1992, 96, 4879. https://doi.org/10.1021/j100191a029
  12. Clemmer, D. E.; Chen, Y.-M.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1994, 98, 7538. https://doi.org/10.1021/j100082a024
  13. Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 163. https://doi.org/10.1021/ja00469a028
  14. Shin, D. N.; Jung, K.-W.; Jung, K.-H. J. Am. Chem. Soc. 1992, 114, 6926. https://doi.org/10.1021/ja00043a054
  15. Choi, S.-S.; Jung, K.-W.; Jung, K.-H. Int. J. Mass Spectrom. Ion Processes 1993, 124, 11. https://doi.org/10.1016/0168-1176(93)85016-7
  16. Lee, S. Y.; Shin, D. N.; Cho, S. G.; Jung, K.-H.; Jung, K.-W. J. Mass Spectrom. 1995, 30, 969. https://doi.org/10.1002/jms.1190300706
  17. Mikhailov, V. A.; Akibo-Betts, G.; Stace, A. J. J. Phys. Chem. A 2002, 106, 8583. https://doi.org/10.1021/jp021091k
  18. Koo, Y.-M.; Kim, J.-H.; Lee, H.; Jung, K.-W. J. Phys. Chem. A 2002, 106, 2465. https://doi.org/10.1021/jp0135205
  19. CRC Handbook of Chemistry and Physics, 81th Ed; Lide, D. R., Ed.; CRC Press: London, 2000.
  20. Pilgrim, J. S.; Yeh, C. S.; Berry, K. R.; Duncan, M. A. J. Chem. Phys. 1994, 100, 7945. https://doi.org/10.1063/1.466840
  21. Weis, P.; Kemper, P. R.; Bowers, M. T. J. Phys. Chem. A 1997, 101, 8207. https://doi.org/10.1021/jp9717249
  22. Chase, M. W.; Curnutt, J. L.; Prophet, H.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1975, 4, 1. https://doi.org/10.1063/1.555517
  23. Koyanagi, G. K.; Caraiman, D.; Blagajevic, V.; Bohme, D. K. J. Phys. Chem. A 2002, 106, 4581. https://doi.org/10.1021/jp014145j
  24. Koyanagi, G. K.; Bohme, D. K.; Kretzschmar, I.; Schöder, D.; Schwarz, H. J. Phys. Chem. A 2001, 105, 4259. https://doi.org/10.1021/jp004197t
  25. Burnier, R. C.; Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1981, 103, 4360. https://doi.org/10.1021/ja00405a012
  26. Misaizu, F.; Sanekata, M.; Fuke, K.; Iwata, S. J. Chem. Phys. 1994, 100, 1161. https://doi.org/10.1063/1.466646
  27. Lu, W.; Yang, S. J. Phys. Chem. A 1998, 102, 825. https://doi.org/10.1021/jp9728969
  28. Woodward, M. P.; Dobson, M. P.; Stace, A. J. J. Phys. Chem. A 1997, 101, 2279. https://doi.org/10.1021/jp9639410
  29. Lu, W.; Huang, R.; Yang, S. J. Phys. Chem. 1995, 99, 12099. https://doi.org/10.1021/j100032a008
  30. Donnelly, S. G.; Schmuttenmaer, C. A.; Qian, J.; Farrer, J. M. J. Chem. Soc., Faraday Trans. 1993, 89, 1457. https://doi.org/10.1039/ft9938901457
  31. Clemmer, D. E.; Aristiv, N.; Armentrout, P. B. J. Phys. Chem. 1993, 97, 544. https://doi.org/10.1021/j100105a005
  32. Gibson, J. K. Rapid Commun. Mass Spectrom. 1996, 10, 256. https://doi.org/10.1002/(SICI)1097-0231(199602)10:3<256::AID-RCM410>3.0.CO;2-E
  33. Buckner, S. W.; Gord, J. R.; Freiser, B. S. J. Am. Chem. Soc. 1998, 110, 6606. https://doi.org/10.1021/ja00228a002
  34. McMillen, D. F.; Golden, D. M. Ann. Rev. Phys. Chem. 1982, 33, 493. https://doi.org/10.1146/annurev.pc.33.100182.002425
  35. Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 1209. https://doi.org/10.1021/j100316a040
  36. Alvarez, E. J.; Wu, H. F.; Liou, C. C.; Brodbelt, J. J. Am. Chem. Soc. 1996, 118, 9131. https://doi.org/10.1021/ja953787f
  37. Zagorevkii, D. V.; Holmes, J. L.; Watson, C. H.; Eyler, J. R. Eur. Mass Spectrom. 1997, 3, 27. https://doi.org/10.1255/ejms.22
  38. Huang, S. K.; Allison, J. Organometallics 1983, 2, 883. https://doi.org/10.1021/om50001a018
  39. Partridge, H.; Bauschlicher, C. W. J. Phys. Chem. 1992, 96, 8827. https://doi.org/10.1021/j100201a027
  40. Elkind, J. L.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1988, 83, 259. https://doi.org/10.1016/0168-1176(88)80032-6
  41. Chen, Y.M.; Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1994, 116, 7815. https://doi.org/10.1021/ja00096a044
  42. Bauschlicher, C. W., Jr.; Partridge, H. J. Phys. Chem. 1991, 95, 3946. https://doi.org/10.1021/j100163a011

Cited by

  1. C–O Bond Cleavage of Dimethyl Ether by Transition Metal Ions: A Systematic Study on Catalytic Properties of Metals and Performance of DFT Functionals vol.117, pp.24, 2013, https://doi.org/10.1021/jp312690e