• Title/Summary/Keyword: Addendum surface

Search Result 5, Processing Time 0.025 seconds

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

SMOOTHING METHOD OF AUTO-BODY PART CONTOUR FOR THE DIE-FACE DESIGN SYSTEM BASED ON THE CAE PLATFORM

  • Gong, K.J.;Guo, W.;Hu, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.853-858
    • /
    • 2006
  • The method of die-face design based on the CAE platform for automobile panels can fast modify the die addendum. In contrast with the process of the die-face design based on the CAD platform, there are some special steps for the die-face design based on the CAE platform. The most obvious difference is that the auto-body part contour needs smoothing arlier than the design of addendum surfaces does. It is helpful to improve the design quality of addendum surface. In spite of extensive researches on the smoothing technique, here is still dearth of the published solutions about smoothing the part contour with additional surface. This paper attempts to analyze the difficulties and provides practical solutions. Main results include the algorithm to calculate the segments needing to be smoothed on boundary, the strategy to create the smoothing curve and the procedure of surface generation. The relevant function modules for parametric design are developed. A few examples and suggestions for future work conclude the paper.

A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature (Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

The Study for Estimation of the Surface Temperature Rise in Spur Gear Tooth (Spur Gear 치면의 표면상승온도 예측에 관한 연구)

  • 김희진;구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.331-337
    • /
    • 2001
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaegers formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along ling of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

Study on Development of Patient Effective Dose Calculation Program of Nuclear Medicine Examination (핵의학검사의 환자 유효선량 계산 프로그램 제작에 관한 연구)

  • Seon, Jong-Ryul;Gil, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.657-665
    • /
    • 2017
  • The aim of this study was to develop and distribute a dedicated program that can easily calculate the effective dose of a patient undergoing nuclear medicine examinations, and assist in the study of dose of nuclear medicine examinations and information disclosure. The program produced a database of the effective dose per unit activity administered (mSv/MBq) of the radiopharmaceuticals listed in ICRP 80, 106 Report and the fourth addendum, was designed through Microsoft Visual Basic (In Excel) to take the effect of 5 different (Area, Clark, Solomon(=Fried), Webster, Young) of pediatric dose calculation methods and 7 different body surface area calculation methods. The program calculates the effective dose (mSv) when the age, radionuclide, substance, and amount injected in the human body is inputted. In pediatric cases, when the age is entered, the pediatric method is activated and the pediatric method to be applied can be selected. When the BSA (Body Surface Area) formula is selected in the pediatric calculation method, a selection window for selecting the body surface area calculation method is activated. When the adult dose is input, the infant dose and the effective dose (mSv) are calculated automatically. The patient effective dose calculation program of the nuclear medicine examinations produced in this study is meaningful as a tool for calculating the internal exposure dose of the human body that is most likely to be obtained in nuclear medicine examinations, even though it is not the actual measurement dose. In the future, to increase the utilization of the program, it will be produced as an application that can be used in mobile devices, so that the public can access it easily.