• Title/Summary/Keyword: Added mass effects

Search Result 183, Processing Time 0.027 seconds

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.

Effects of Mustard Seed (Brassica juncea) during Preservation of Soup for Naengmyon (냉면육수의 보존중 겨자의 첨가효과)

  • Seo, Kwon-Il;Kang, Kap-Suk;Shim, Ki-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • Effects of mustard seed (Brassica juncea) on the preservation of soup for Naengmyon were investigated, and morphological changes of E. coli treated with extract of mustard seed were examined. Titratable acidity of soup for Naengmyon treated with mustard seed was higher than that of control at initial stage, but became lower than control after 24 hours of preservation. The number of bacteria and E. coli in soup for Naengmyon added with mustard seed was lower than that of control, and the more mustard seed was added, the less bacteria and E. coli were observed. The content of volatile basic nitrogen (VBN) increased during preservation of soup for Naengmyon. The VBN content of soup for Naengmyon added with mustard seed was higher than that of control, and the more mustard seed was added, the lower VBN was detected. Scanning eletron microscopys of E. coli treated with extract of mustard seed showed that cell surface was distorted with shrinked cell mass.

  • PDF

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Improvement of Dimensional Stability of Acacia mangium Wood by Heat Treatment: A Case Study of Vietnam

  • Tran, Van Chu
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.109-115
    • /
    • 2013
  • Fast-grown wood generally contains a high proportion of juvenile wood that results in inferior dimensional stability and durability against biological deteriorations. In the present research, the Acacia mangium wood from plantation forests in Vietnam was treated with high temperature in air. The effects of heat treatment on physical properties of Acacia mangium wood, including mass loss (ML), water absorption (WA), water-repellent effectiveness (WRE) and anti-swelling efficiency (ASE) were examined. The results showed that the dimensional stability and the water-repellent effectiveness are increased by about 15-46% and 8-18%, respectively. However, the mass and dimension of wood are decreased. The results also indicated that both treatment temperature and treatment duration significantly affect the wood properties of Acacia mangium. It is thus concluded that heat treatment demonstrates an interesting potential to improve the wood quality of Acacia mangium for solid timber products. This technology provides an environmentally safe method of protecting sustainable common woods to give a new generation of value-added biomaterials with increased stability without the use of toxic chemicals.

An Experimental Study on the Elastic Vibration of Plates in Contact with Water (평판(平板)의 접수진동(接水振動)에 관한 실험적(實驗的) 연구(硏究))

  • K.C.,Kim;J.S.,Kim;H.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 1979
  • The authors had done theoretical analysis of the vibration of rectangular elastic plates in contact with water. In this analysis, using the elliptic cylindrical coordinate system, they investigated the effects of mass density ratios, chord-length to thickness ratios, aspect ratios, boundary conditions and mode shapes on the added mass of plates. The results are reported in papers quoted as the reference [4] and [5] of this paper. In this report the results of experiments conducted to verify the above theoretical analysis are presented. It shows that numerical results derived from the theoretical analysis are generally in good agreement with the experimental results.

  • PDF

Improving the Stability of Gel Mass of Vegetable Soft Capsule (식물성 연질캡슐의 겔 조성물 안정성 개선 연구)

  • Lee, Yeon Hui;Weon, Kwon Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.397-404
    • /
    • 2016
  • The objective of this study is to determine the physical characteristics of the gel mass of vegetable soft capsules and to maintain their rheological stability for improving manufacturability. The effect of each capsule shell component on the viscosity of the gel mass was studied for 6 hours, and the effects of adding an alkalizer or electrolytes to neutralize the sulfate groups on the carrageenan molecule were also investigated. Carrageenan was identified as a major component that affects the viscosity of the gel mass, and it showed unstable properties with age. The viscosity and stability of the gel mass were remarkably improved when an alkalizer or electrolytes were added at 3.0% relative to the carrageenan. 3.6 M KCl showed the highest effect on increasing the viscosity. A stable gel mass composition for vegetable soft capsules was successfully developed, which can be considered to increase the application of the capsules in the pharmaceutical and food industries.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.

TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes

  • Domizio, Martin N.;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The use of Tuned mass dampers (TMD) has proved to be effective in reducing the effects of vibrations caused by wind loads and far-field seismic action. However, its effectiveness in controlling the dynamic response of structures under near-fault earthquakes is still under discussion. In this case, the uncertainty about the TMD performance arises from the short significant duration of near-fault ground motions. In this work, the TMD effectiveness for increasing the safety margin against collapse of structures subjected to near-fault earthquakes is investigated. In order to evaluate the TMD performance in the proposed scenario, the nonlinear dynamic response of two reinforced concrete (RC) frames was analyzed. TMDs with different mass values were added to these structures, and a set of near-fault records with frequency content close to the fundamental frequency of the structure was employed. Through a series of nonlinear dynamic analysis, the minimum amplitude of each seismic record that causes the structural collapse was found. By comparing this value, called collapse acceleration, for the case of the structures with and without TMD, the benefit produced by the addition of the control device was established.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

Hydrodynamic Forces Acting on Porpoising Craft at High-Speed

  • Katayama, Toru;Ikeda, Yoshiho
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1999
  • An experimental investigation on hydrodynamic forces acting on a porpoising craft at high advanced speeds up to Froude numbers Fn=6.0(Fn=U\ulcorner:Lo\ulcorner denote overall length of ship) in calm water is performed. Captive model tests and forced motion tests are carried out to measure the hydrodynamic forces. The results show that significant nonlinear effects for motion amplitudes appear in the restoring, the added mass and the damping coefficients. The experimental results are compared with the results of a prediction method of the hydrodynamic forces include the nonlinear effects, and show a good agreement with them. A simulation using the predicted hydrodynamic forces in a nonlinear motion equation is carried out to obtain the porpoising motion of a craft in calm water. The calculated results are in fairly good agreement with experimental ones.

  • PDF