• Title/Summary/Keyword: Adaptive traffic control

Search Result 227, Processing Time 0.032 seconds

A Design for Elevator Group Controller of Building Using Adaptive Dual Fuzzy Algorithm

  • Kim, Hun-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1664-1675
    • /
    • 2001
  • In this paper, the development of a new group controller for high-speed elevators is described utilizing the approach of adaptive dual fuzzy logic. Some goals of the control are to minimize the waiting time, mean-waiting time and long-waiting time in a building. When a new hall call is generated, all adaptive dual fuzzy controller evaluates the traffic patterns and changes the membership function of a fuzzy rule base appropriately. A control algorithm is essential to control the cooperation of multiple elevators in a group and the most critical control function in the group controller is an effective and proper hall call assignment of the elevators. The group elevator system utilizing adaptive dual fuzzy control clearly performs more effectively than previous group controllers.

  • PDF

A Study on the adaptive Connection Admission Control Method in ATM Networks (ATM망에서 적응적 연결수락제어 방법에 관한 연구)

  • 한운영;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1719-1729
    • /
    • 1994
  • In this paper, an adaptive CAC(Connection Admission Control) method is proposed. The adaptive CAC uses traffic estimates derived from both traffic parameter specified by user and cell flow measurements. Traffic estimation using user-specified parameters is performed at every moment of connection request or connection release by recursive formula which makes real-time calculation possible. Traffic estimation using cell flow measurement is carried out when the number of connected calls does not change during a measurement reflection period-renewal period. The most import ant thing for the traffic estimation using cell flow measurement is the determination of the length of a renewal period to trace a real traffic flow with an allowable time lag and the measurement reflection ratio(MRR) both to reduce the portion of overestimation and to avoid underestimation of real traffic flow. To solve these problems, the adaptive CAC updates renewal period and MRR adaptively according to the number of connections and the elapsed time after last connection or release respectively. Performance analysis for the proposed method is evaluated in several aspects for the cases of both homogeneous and heterogeneous bursty traffic. Numerical examples show the adaptive CAC method has the better performance compared with conventional CAC method based on burst model from the both utilization and QOS point of view.

  • PDF

Fuzzy Adaptive Traffic Signal Control of Urban Traffic Network (퍼지 적응제어를 통한 도시교차로망의 교통신호제어)

  • 진현수;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.127-141
    • /
    • 1996
  • This paper presents a unique approach to urban traffic network signal control. This paper begins with an introduction to traffic control in general, and then goes on to describe the approach of fuzzy control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic network condition and adjacent intersection. The signal timing parameters evolve dynamically using only local information to improve traffic signal flow. The signal timing at an intersection is defined by three parameters : cycle time, phase split, off set. Fuzzy decision rules are used to adjust three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. In this paper the effectiveness of this method is showed through simulation of the traffic signal flow in a network of controlled intersection.

  • PDF

An Enhanced Adaptive Power Control Mechanism for Small Ethernet Switch (소규모 이더넷 스위치에서 개선된 적응적 전력 제어 메커니즘)

  • Kim, Young-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • Ethernet is the most widely deployed access network protocol around the world. IEEE 802.3az WG released the EEE standard based on LPI mode to improve the energy efficiency of Ethernet. This paper proposes improved adaptive power control mechanism that can enhance energy-efficiency based on EEE from small Ethernet switch. The feature of this mechanism is that it predicts the traffic characteristic of next cycle by measuring the amount of traffic flowing in during certain period and adjusts the optimal threshold value to relevant traffic load. Performance evaluation results indicate that the proposed mechanism improves overall performance compared to traditional mechanism, since it significantly reduces energy consumption rate, even though average packet delay increases a little bit.

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

Design and Implementation of adaptive traffic signal simulator system for U-Traffic (U-Traffic의 적응형 교통 신호 시뮬레이터 구축에 대한 연구)

  • Jang, Won-Tae;Kang, Woo-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • In Busan, the structural limitations of the road, is causing severe traffic congestion and low speed of the vehicle. So the existing traffic control system needs improvements to its structure. A study on Optimal Traffic Signal System and Improvement for User Oriented Public Transit Service are required. U-city is a city or region with ubiquitous information technology. All information systems are linked, and virtually everything is linked to an information technologies. U-Traffic goal is to maximize of traffic information services based on advanced information technology to integrate of transportation infrastructure. The objectives of this research are : a vehicle detection method through a variety of sensors, an algorithm of the traffic signal system, a design and implementation a simulator to compare between the fixed traffic signal and adaptive traffic signal system. This simulator will have allowed analysis techniques for the study of traffic control. Results of simulator test shows that traffic congestion can be some reduce.

ADAPTIVE, REAL-TIME TRAFFIC CONTROL MANAGEMENT

  • Nakamiti, G.;Freitas, R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.89-94
    • /
    • 2002
  • This paper presents an architecture for distributed control systems and its underlying methodological framework. Ideas and concepts of distributed systems, artificial intelligence, and soft computing are merged into a unique architecture to provide cooperation, flexibility, and adaptability required by knowledge processing in intelligent control systems. The distinguished features of the architecture include a local problem solving capability to handle the specific requirements of each part of the system, an evolutionary case-based mechanism to improve performance and optimize controls, the use of linguistic variables as means for information aggregation, and fuzzy set theory to provide local control. A distributed traffic control system application is discussed to provide the details of the architecture, and to emphasize its usefulness. The performance of the distributed control system is compared with conventional control approaches under a variety of traffic situations.

A Study on the Traffic Controller of ATM Call Level Based on On-line Learning (On-line 학습을 통한 ATM 호레벨 트래픽 제어 연구)

  • 서현승;백종일;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.115-118
    • /
    • 2000
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. To effectively control traffic in UNI(User Network Interface) stage, we proposed algorithm of integrated model using on-line teaming neural network for CAC(Call Admission Control) and UPC(Usage Parameter Control). Simulation results will show that the proposed adaptive algorithm uses of network resources efficiently and satisfies QoS for the various kinds of traffics.

  • PDF

Congestion Control to Improve QoS with TCP Traffic (TCP트래픽에 대한 QoS를 향상시키기 위한 폭주제어)

  • 양진영;이팔진;김종화
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • End-to-end congestion control mechanism have been critical to the robustness and stability of the Internet. Most of today's Internet traffic is TCP, and we expect this to remain so in the future. TCP/IP is the intermediate transport layer candidate for today's applications. TCP uses an adaptive window-based flow control. The congestion avoidance and control algorithms deployed by TCP aims at using the available network bandwidth. This paper compares different congestion control policies, and proposes the new design mechanism for future public networks

  • PDF

An Adaptive Contention Windows Adjustment Scheme Based on the Access Category for OnBord-Unit in IEEE 802.11p (IEEE 802.11p에서 차량단말기간에 혼잡상황 해결을 위한 동적 충돌 윈도우 향상 기법)

  • Park, Hyun-Moon;Park, Soo-Hyun;Lee, Seung-Joo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.28-39
    • /
    • 2010
  • The study aims at offering a solution to the problems of transmission delay and data throughput decrease as the number of contending On-Board Units (OBU) increases by applying CSMA medium access control protocol based upon IEEE 802.11p. In a competition-based medium, contention probability becomes high as OBU increases. In order to improve the performance of this medium access layer, the author proposes EDCA which a adaptive adjustment of the Contention Windows (CW) considering traffic density and data type. EDCA applies fixed values of Minimum Contention Window (CWmin) and Maximum Contention Window (CWmax) for each of four kinds of Access Categories (AC) for channel-specific service differentiation. EDCA does not guarantee the channel-specific features and network state whereas it guarantees inter-AC differentiation by classifying into traffic features. Thus it is not possible to actively respond to a contention caused by network congestion occurring in a short moment in channel. As a solution, CWminAS(CWmin Adaptation Scheme) and ACATICT(Adaptive Contention window Adjustment Technique based on Individual Class Traffic) are proposed as active CW control techniques. In previous researches, the contention probabilities for each value of AC were not examined or a single channel based AC value was considered. And the channel-specific demands of IEEE 802.11p and the corresponding contention probabilities were not reflected in the studies. The study considers the collision number of a previous service section and the current network congestion proposes a dynamic control technique ACCW(Adaptive Control of Contention windows in considering the WAVE situation) for CW of the next channel.