• 제목/요약/키워드: Adaptive prediction

검색결과 621건 처리시간 0.021초

Adaptive MPEG Traffic Prediction

  • Jung, Souhwan;Yoo, Jisang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권3E호
    • /
    • pp.7-13
    • /
    • 1997
  • This paper addresses traffic prediction issues on MPEG. A new adaptive traffic prediction scheme is proposed using MPEG picture characteristic that picture traffic depends on the coding mode of that picture, that is, I, P, and B mode. Our prediction scheme, which is based n picture decomposition (PD) and the cross-correlation of the different types of pictures, has better performance in predicting bursty MPEG traffic than that of the first-order autoregressive (AR) prediction scheme. Our simulation results show that the performance is further improved about 15% by utilizing the cross-correlations between pictures.

  • PDF

우리나라 의용생체공학의 현황과 전망

  • 이충웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.83-88
    • /
    • 1989
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Gamma 다층 신경망을 이용한 비선형 적응예측 (Nonlinear Prediction using Gamma Multilayered Neural Network)

  • 김종인;고일환;최한고
    • 융합신호처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2006
  • 동적 신경망은 시스템 식별과 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에서 적용되어 왔다. 본 논문에서는 신경망의 동특성을 향상시키기 위해 순방향 다층 신경망의 히든 층에 감마(Gamma) 메모리 커넬을 사용하는 감마 신경망(GAM)을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측성능의 상대적인 비교를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하였다. 시뮬레이션 결과에 의하면 GAM 신경망은 수렴속도와 예측의 정확도에서 이러한 신경망보다 더 우수한 동작을 수행함으로써, 제안된 신경망이 기존의 다층 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

  • PDF

Serially Correlated Process Monitoring Using Forward and Backward Prediction Errors from Linear Prediction Lattice Filter

  • Choi, Sungwoon;Lee, Sanghoon
    • 품질경영학회지
    • /
    • 제26권4호
    • /
    • pp.143-150
    • /
    • 1998
  • We propose an adaptive monitoring a, pp.oach for serially correlated data. This algorithm uses the adaptive linear prediction lattice filter (ALPLF) which makes it compute process parameters in real time and recursively update their estimates. It involves computation of the forward and backward prediction errors. CUSUM control charts are a, pp.ied to prediction errors simulaneously in both directions as an omnibus method for detecting changes in process parameters. Results of computer simulations demonstrate that the proposed adaptive monitoring a, pp.oach has great potentials for real-time industrial a, pp.ications, which vary frequently in their control environment.

  • PDF

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF

Adaptive Scanning for H.264/AVC Intra Coding

  • Lee, Yung-Lyul;Han, Ki-Hun;Sim, Dong-Gyu;Seo, Jeong-Il
    • ETRI Journal
    • /
    • 제28권5호
    • /
    • pp.668-671
    • /
    • 2006
  • In this letter, an adaptive scanning that improves intra coding efficiency in the H.264/AVC standard is proposed. The proposed adaptive scanning utilizes the prediction directions (modes) that include the horizontal and vertical edge information in a block. Depending on the prediction directions, the proposed method uses three scanning methods: zigzag scanning, horizontal scanning, and vertical scanning. In the proposed method, horizontal and vertical scanning are used in vertical and horizontal prediction modes, respectively, and the normal zigzag scanning in the H.264 standard is used in all other intra prediction modes. The proposed method reduces the bit rate by approximately 2.5% compared with H.264/AVC, without the degradation of video quality.

  • PDF

유색잡음에 대한 적응잡음제거기의 성능향성 (Performance improvement of adaptivenoise canceller with the colored noise)

  • 박장식;조성환;손경식
    • 한국통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.2339-2347
    • /
    • 1997
  • The performance of the adaptive noise canceller using LMS algorithm is degraded by the gradient noise due to target speech signals. An adaptive noise canceller with speech detector was proposed to reduce this performande degradation. The speech detector utilized the adaptive prediction-error filter adapted by the NLMS algorithm. This paper discusses to enhance the performance of the adaptive noise canceller forthecorlored noise. The affine projection algorithm, which is known as faster than NLMS algorithm for correlated signals, is used to adapt the adaptive filter and the adaptive prediction error filter. When the voice signals are detected by the speech detector, coefficients of adaptive filter are adapted by the sign-error afine projection algorithm which is modified to reduce the miaslignment of adaptive filter coefficients. Otherwirse, they are adapted by affine projection algorithm. To obtain better performance, the proper step size of sign-error affine projection algorithm is discussed. As resutls of computer simulation, it is shown that the performance of the proposed ANC is better than that of conventional one.

  • PDF

심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구 (Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV))

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.239-247
    • /
    • 2019
  • 감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.

지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측 (Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks)

  • 최한고
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.139-147
    • /
    • 2003
  • 동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

혼성 예측 피라미드 호환 부호화 기법 (On the Hybrid Prediction Pyramid Compatible Coding Technique)

  • 이준서;이상욱
    • 한국통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.33-46
    • /
    • 1996
  • Inthis paper, we investigate the compatible coding technique, which receives much interest ever since the introduction of HDTV. First, attempts have been made to analyze the theoretical transform coding gains for various hierarchical decomposition techniques, namely subband, pyramid and DCT-based decomposition techniques. It is shown that the spatical domain techniques proide higher transform coding gains than the DCT-based coding technique. Secondly, we compare the performance of these spatial domain techniques, in terms of the PSNR versus various rate allocations to each layer. Based on these analyses, it is believed that the pyramid decomposition is more appropriate for the compatible coding. Also in this paper, we propose a hybrid prediction pyramid coding technique, by combining the spatio-temporal prediction in MPEG-2[3] and the adaptive MC(Motion Compensation)[1]. In the proposed coding technigue, we also employ an adaptive DCT coefficient scanning technique to exploit the direction information of the 2nd-layer signal. Through computer simulations, the proposed hybrid prediction with adaptive scanning technuque shows the PSNR improvement, by about 0.46-1.78dB at low 1st-layer rate(about 0.1bpp) over the adaptive MC[1], and by about 0.33-0.63dB at high 1st-layer rate (about 0.32-0.43bpp) over the spatio-temporal prediction[3].

  • PDF