• Title/Summary/Keyword: Adaptive machining

Search Result 60, Processing Time 0.028 seconds

Adaptive Identification Method of EDM Parameters Using Neural Network (신경망을 이용한 방전 조건의 적응적 결정 방법)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 1998
  • Adaptive neural network approach is presented for determining Electrical Discharge Machining (EDM) parameters. Electrical Discharge Machining has been widely used with its capability of machining hard metals and tough shapes. In the past few years, EDM has been established in tool-room and large-scale production. However. in spite of it's wide application, an universal selection method of EDM parameters has not been established yet. No attempt has been tried before to suggest a logical method in determining essential machine parameters considering the machining rate and resulting surface roughness integrity. The paper presents a method, which is focusing on determining appropriate machining parameters. Depending on the electrode wear and surface roughness, an adaptive neural network is designed for providing suitable machining guideline.

  • PDF

Adaptive cutting force controller for milling processes by using AC servodrive current measurements

  • Kim, Jongwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.840-843
    • /
    • 1996
  • This paper presents an adaptive cutting force controller for milling process, which can be attached to most commercial CNC machining centers in a practical way. The cutting forces of X,Y and Z axes measured indirectly from the use of currents drawn by AC feed-drive servo motors. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The robust controller structure is adopted in the whole adaptive control scheme. The conditions under which the whole scheme is globally convergent and stable are presented. The suggested control scheme has been implemented into a commercial machining center, and a series of cutting experiments on end milling and face milling processes are performed. The adaptive controller reveals reliable cutting force regulating capability under various cutting conditions.

  • PDF

NC Technology for High-Precision Machining in Machining Centers (머시닝센터에서 고정밀 가공을 위한 NC 기술)

  • 정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

The Tool Path Determination for Machining the Plane Curve by an Adaptive Mesh Generation Technique - Comparision among the Adaptive Linear Interpolation, Parabolic Interpolation & Linear-Parabolic Interpolation Method - (적응요소분할법에 의한 평면곡선가공의 공구경로 결정 - 적응요소직선보간과 적응요소포물선보간 및 혼합보간법의 비교 -)

  • Hyun, Chang-Heon
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.69-76
    • /
    • 1992
  • An attempt has been made to determination the NC milling machine's tool-path through the adaptive parabolic interpolation method & the adaptive linear-parabolic interpolation method in consideration of the economical machining time. The algorithms for the above-mentioned interpolation methods have been designed and the numerical experiments for these methods have been conducted with the existing adaptive linear interpolation methods for comparision.

  • PDF

A study on the adaptive control of process parameters using torque for end milling operation in machining center (Machining Center에서 End Millirh할 때 Torgue에 의한 가공변수의 적응제어에 관한 연구)

  • 박천령;윤문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.889-897
    • /
    • 1986
  • The purpose of this study is to describe the strategy of machining process suitable for developing adaptive control with constraint of NC-machine tool. The algorithm that controls machining process parameters of every sampling time is established for the constraint of torque in machinig center. To prove this AC algorithm, manual AC-unit control test is used for simulating the on-line AC strategy control. Also machining tests are carried out on a CNC-machining center fitted with the ACC system and compared with the simulated results. The practical effectiveness of the ACC systems so discussed and the reduction of machining time are demonstrated with reference to typical models of cutting workpieces. As a typical model, taper and step geometry model are selected. The computer simulation results have a good agreement with the experimental observation and make it possible to develope a NC-machine tool with an on-line ACC system.

An approach for machining allowance optimization of complex parts with integrated structure

  • Zhang, Ying;Zhang, Dinghua;Wu, Baohai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Currently composite manufacturing process, such as linear friction welding plus NC machining, is the main method for the manufacturing and repairing of complex parts with integrated structure. Due to different datum position and inevitable distortion from different processes, it is important to ensure sufficient machining allowance for complex parts during the NC machining process. In this paper, a workpiece localization approach for machining allowance optimization of complex parts based on CMM inspection is developed. This technique concerns an alignment process to ensure sufficient stock allowance for the single parts as well as the whole integrated parts. The mathematical model of the constrained alignment is firstly established, and then the symmetric block solution strategy is proposed to solve the optimization model. Experiment result shows that the approach is appropriate and feasible to distribute the machining allowance for the single and whole parts for adaptive machining of complex parts.

Adaptive Feedrate Neuro-Control for High Precision and High Speed Machining (고정밀 고속가공을 위한 신경망 이송속도 적응제어)

  • Lee, Seung-Soo;Ha, Soo-Young;Jeon, Gi-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.35-42
    • /
    • 1998
  • Finding a technique to achieve high machining precision and high productivity is an important issue for CNC machining. One of the solutions to meet better performance of machining is feedrate control. In this paper we present an adaptive feedrate neuro-control method for high precision and high speed machining. The adaptive neuro-control architecture consists of a neural network identifier(NNI) and an iterative learning control algorithm with inversion of the NNI. The NNI is an identifier for the nonlinear characteristics of feedrate and contour error, which is utilized in iterative learning for adaptive feedrate control with specified contour error tolerance. The proposed neuro-control method has been successfully evaluated for machining circular, corner and involute contours by computer simulations.

  • PDF

Improvement of circular cutting using adaptive control in micro milling with piezo-actuator (피에조 구동기의 마이크로 밀링에서 적응제어를 이용한 원주가공의 성능향상)

  • Chung B. M.;Ko T. J.;Seok J. W.;Kim H. S.;Park J. K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.201-208
    • /
    • 2006
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step-by-step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes an adaptive control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

Improvement of circular cutting using adaptive control in micro milling with piezo-actuator (마이크로 밀링에서 적응제어를 이용한 피에조 구동기의 원주가공의 성능향상)

  • Kim T.H.;Ko T.J.;Chung B.M.;Kim H.S.;Seok J.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.543-550
    • /
    • 2005
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step by step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes an adaptive control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

  • PDF

Adaptive Cutting force Control of 2Axes (절삭 공정의 2축 적응제어)

  • 조광섭;우중원;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.653-657
    • /
    • 1996
  • This paper presents adaptive cutting force control in milling process using indirect cutting force measurement. The cutting forces in X, Y, and Z axes are measured indirectly from the sensing current of the feed-drive servo motor. After modelling the feed-drive system of a horizontal machining center, the relation between the cutting force and the servo motor current is analyzed. The pulsating milling forces are measured from the sensing current within the bandwidth of the servo. It is shown that indirect cutting farce measurement can be used in adaptive cutting force control. The adaptive control scheme which is globally convergent and stable is attached to a commercial CNC machining center. Cutting experiments on end milling are performed for diagonal cutting.

  • PDF