• 제목/요약/키워드: Adaptive fuzzy neural control

검색결과 214건 처리시간 0.025초

적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링 (On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network)

  • 박춘성;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

AFNN 제어기에 의한 유도전동기 드라이브의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor Drive with AFNN)

  • 고재섭;남수명;최정식;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.195-197
    • /
    • 2005
  • This paper is proposed adaptive fuzzy neural network(AFNN) and artificial neural network(ANN) based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed control and estimation of speed of induction motor using fuzzy and neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed. so that the actual state variable will coincide with the desired one. This paper is proposed the experimental results to verify the effectiveness of the new method.

  • PDF

유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발 (Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.33-42
    • /
    • 2010
  • 벡터제어를 적용한 유도전동기 드라이브는 고성능 제어를 위하여 산업 적용분야에 광범위하게 사용되고 있다. 그러나 유도전동기의 모델은 비선형이고 복잡하기 때문에 포화, 온도변화, 외란 및 파라미터 변동등에 의해 성능 및 신뢰성이 저하된다. 이러한 가변속 드라이브를 제어하기 위하여 종래의 PI와 같은 제어기들이 일반적으로 사용되어졌다. 이러한 제어기들은 이상적인 벡터제어 상태에서도 광범위한 동작영역에서 양호한 성능을 나타내는데 한계를 가지고 있다. 본 논문은 퍼지제어, 신경회로망, 적응 퍼지제어로 구성된 FNN(Fuzzy-Neural Network)-PI 제어기 기반 자기동조 PI 제어기와 ANN을 이용한 속도추정을 제시한다. FNN-PI, AFC, ANN 제어기를 이용한 제어 알고리즘은 유도전동기 드라이브 시스템에 적용하여 그 결과를 분석하고 제어기의 효용성을 입증한다.

NN에 의한 IPMSM 드라이브의 효율최적화 제어기 개발 (Efficiency Optimization Controller Development of IPMSM Drive by NN)

  • 최정식;박기태;고재섭;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.94-96
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy teaming control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

IPMSM 드라이브의 효율최적화를 위한 인공지능 제어기 개발 (Development of Artificial Intelligent Controller for Efficiency Optimization of IPMSM Drive)

  • 최정식;고재섭;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1007-1008
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy learning control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

새로운 퍼지-신경망을 이용한 퍼지소속함수의 학습 (Learning of Fuzzy Membership Function by Novel Fuzzy-Neural Networks)

  • 추연규;탁한호
    • 한국항해학회지
    • /
    • 제22권2호
    • /
    • pp.47-52
    • /
    • 1998
  • Recently , there have been considerable researches about the fusion of fuzzy logic and neural networks. The propose of thise researches is to combine the advantages of both. After the function of approximation using GMDP (Generalized Multi-Denderite Product)neural network for defuzzification operation of fuzzy controller, a new fuzzy-neural network is proposed. Fuzzy membership function of the proposed fuzzy-neural network can be adjusted by learning in order to be adaptive to the variations of a parameter or the external environment. To show the applicability of the proposed fuzzy-nerual network, the proposed model is applied to a speed control o fDC sevo motor. By the hardware implementation, we obtained the desriable results.

  • PDF

외란 관측기를 이용한 비선형 시스템의 강인 적응제어 (Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer)

  • 황영호;한병조;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

FLC-FNN 제어기에 의한 유도전동기의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor with FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제55권3호
    • /
    • pp.117-122
    • /
    • 2006
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also this paper is proposed. speed control of induction motor using FLC-FNN and estimation of speed using ANN controller. The back Propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

퍼지신경망을 이용한 공 막대 시스템의 제어 (Control of a Ball on Beam System using Fuzzy Neural Network)

  • 강유원;고재호;류창완;심재철;배영철;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.483-485
    • /
    • 1998
  • Neural Network has advantages of learning and normalizing capabilities. Fuzzy controller is based on a fuzzy logic that is so effective to represent uncertain phenomena of real world and make its approximation. In this paper, Fuzzy Neural Network controller which equipped with adaptive control algorithm is described. Proposed Fuzzy Neural Network Controller applied to a ball on beam system which have nonlinear characteristics shows a good performance.

  • PDF