• Title/Summary/Keyword: Adaptive fuzzy neural control

Search Result 213, Processing Time 0.028 seconds

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Adaptive NFC Control for High Performance Control of SPMSM Drive (SPMSM 드라이브의 고성능 제어를 위한 적응 NFC 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Nam Su-Myeong;Park Gi-Tae;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1248-1250
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network controller(NFC) for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on NFC that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive NFC is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Adaptive Fuzzy Logic Control Using a Predictive Neural Network (예측 신경망을 이용한 적응 퍼지 논리 제어)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.46-50
    • /
    • 1997
  • In fuzzy logic control, static fuzzy rules cannot cope with significant changes of parameters of plants or environment. To solve this prohlem, self-organizing fuzzy control. neural-network-hased fuzzy logic control and so on have heen introduced so far. However, dynamically changed fuzzy rules of these schemes may make a fuzzy logic controller Fall into dangerous situations because the changed fuzzy rules may he incomplete or inconsistent. This paper proposes a new adaptive filzzy logic control scheme using a predictivc neural network. Although some parameters of a controlled plant or environment are changed, proposed fuzzy logic controller changes its decision outputs adaptively and robustly using unchanged initial fuzzy rules and the predictive errors generated hy the predictive neural network by on-line learning. Experimental results with a D<' servo-motor position control problem show that propnsed cnntrol scheme is very useful in the viewpoint of adaptability.

  • PDF

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.

A neuro-fuzzy adaptive controller

  • Chung, Hee-Tae;Lee, Hyun-Cheol;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.261-264
    • /
    • 1992
  • This paper proposes a neuro-fuzzy adaptive controller which includes the procedure of initializing the identification neural network(INN) and that of learning the control neural network(CNN). The identification neural network is initialized with the informations of the plant which are obtained by a fuzzy controller and the control neural network is trained by the weight informations of the identification neural network during on-line operation.

  • PDF

Fuzzy Control Method By Automatic Scaling Factor Tuning (자동 양자이득 조정에 의한 퍼지 제어방식)

  • 강성호;임중규;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

Speed Estimation and Control of IPMSM using HAI Control (HAI 제어를 이용한 IPMSM의 속도 추정 및 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF