• Title/Summary/Keyword: Adaptive current control

Search Result 387, Processing Time 0.021 seconds

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

A Study on Adaptive Control to Fill Weld Groove by Using Multi-Torches in SAW (SAW 용접시 다중 토치를 이용한 용접부 적응제어에 관한 연구)

  • 문형순;정문영;배강열
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.90-99
    • /
    • 1999
  • Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve a reliable weld bead appearance, automatic seam tracking and adaptive control to fill the groove are urgently needed. For the seam tracking in welding processes, the vision sensors have been successfully applied. However, the adaptive filling control of the multi-torches system for the appropriate welded area has not been implemented in the area of SAW(submerged arc welding) by now. The term adaptive control is often used to describe recent advances in welding process control by strictly this only applies to a system which is able to cope with dynamic changes in system performance. In welding applications, the term adaptive control may not imply the conventional control theory definition but may be used in the more descriptive sense to explain the need for the process to adapt to the changing welding conditions. This paper proposed various types of methodologies for obtaining a good bead appearance based on multi-torches welding system with the vision system in SAW. The methodologies for adaptive filling control used welding current/voltage, arc voltage/welding current/wire feed speed combination and welding speed by using vision sensor. It was shown that the algorithm for welding current/voltage combination and welding speed revealed sound weld bead appearance compared with that of voltage/current combination.

  • PDF

Effect of Initial (Reference) Welding Current for Adaptive Control and It's Optimization to Secure Proper Weld Properties in Resistance Spot Welding

  • Ashadudzzaman, Md.;Choi, Il-Dong;Kim, Jae-Won;Nam, Dae-Geun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.13-20
    • /
    • 2015
  • Many automotive companies are endeavoring to improve the quality of resistance spot welding by updating body-in-white (BIW) production line with adaptive control spot welding system to compensate the process disturbances such as gap, electrode wear, oxidized surfaces, poor fit up and adhesive etc. Most of the commercial adaptive weld controllers require proper "Initial Welding Schedule" or "Reference weld" to achieve compensation in welding parameters during real time welding. In this study, the compensation of a commercial adaptive weld controller had been observed and analyzed thoroughly for various process disturbances to find optimal initial welding schedule. It was observed that 90 percent of the expulsion current in constant current control as reference welding schedule conferred the maximum button diameter in adaptive control welding. Finally, effects of each disturbance in combined field disturbances system with adaptive control had also been confirmed with the design of experiment (DOE) by minitab(R)16 for combined disturbances situation and suitability of optimum initial weld current had also established with real body part validation test.

Cutting Force Estimation and Feedrate Adaptive Control Using Spindle Motor Current (주축전류신호를 이용한 절삭력의 추정과 이송속도 적응제어)

  • 김기대;이성일;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.150-156
    • /
    • 1996
  • Static variations of cutting forces are estimated using spindle motor current. Static sensitivity of spindle motor current is higher than feed motor current. The linear relationship between the cutting force and RMS value of the spindle motor current is obtained. Using cutting force estimation, tool overload in milling process can be well detected, and cutting force is regulated at a constant level by feedrate adaptive control.

  • PDF

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Adaptive Current Control Scheme of PM Synchronous Motor with Estimation of Flux Linkage and Stator Resistance

  • Kim, Kyeoug-Hwa;Baik, In-Cheol;Chung, Se-Kyo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.17-20
    • /
    • 1996
  • An adaptive current control scheme of a permanent magnet (PM) synchronous motor with the simultaneous estimation of the magnitude of the flux linkage and stator resistance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive system (MRAS) technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. The predictive control scheme is employed for the current controller with the estimated parameters. The robustness of the proposed current control scheme is compared with the conventional one through the computer simulations.

  • PDF

Adaptive Hysteresis Band Current Control Independent of the Back EMFs (역기전력에 무관한 가변 히스테리시스 밴드 전류 제어)

  • Kim, Kyeong-Hwa;Cho, Kwan-Yuhl;Chung, Se-Kyo;Oh, Dong-Seong;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1172-1175
    • /
    • 1992
  • The conventional adaptive hysteresis band current control technique has disadvantages such that on-line calculation of the hysteresis band is very complex, therefore, the adaptive hysteresis band must be stored in the look-up table. In this paper, a new simplified adaptive hysteresis band current control technique with phase decoupling is presented. The adaptive band is independent of the back EMFs. Using this adaptive band and the phase decoupled current error, the modulation frequency is fixed at nearly constant and the PWM inverter has optimal switching pattern.

  • PDF

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

A Study on Adaptive Control to Fill Weld GrooveBy Using Multi-Torches in SAW (SAW 용접시 다중 토치를 이용한 용접부 적응제어에 관한 연구)

  • 문형순;김정섭;권혁준;정문영
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.47-50
    • /
    • 1999
  • The term adaptive control is often used to describe recent advances in welding process control but strictly this only applies to system which are able to cope with dynamic changes in system performance. In welding applications, the term adaptive control may not imply the conventional control theory definition but may be used in the more descriptive sense to explain the need for the process to adapt to the changing welding conditions. This paper proposed a methodology for obtaining a good bead appearance based on multi-torches welding system with the vision system in SAW. The methodologies for adaptive filling control used the welding current/voltage, arc voltage/welding current/wire feed speed combination and welding speed by using the vision sensor. It was shown that the algorithm for the welding current/voltage combination and welding speed revealed the sound weld bead appearance compared with that of the voltage/current combination.

  • PDF

Adaptive Cutting force Control of 2Axes (절삭 공정의 2축 적응제어)

  • 조광섭;우중원;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.653-657
    • /
    • 1996
  • This paper presents adaptive cutting force control in milling process using indirect cutting force measurement. The cutting forces in X, Y, and Z axes are measured indirectly from the sensing current of the feed-drive servo motor. After modelling the feed-drive system of a horizontal machining center, the relation between the cutting force and the servo motor current is analyzed. The pulsating milling forces are measured from the sensing current within the bandwidth of the servo. It is shown that indirect cutting farce measurement can be used in adaptive cutting force control. The adaptive control scheme which is globally convergent and stable is attached to a commercial CNC machining center. Cutting experiments on end milling are performed for diagonal cutting.

  • PDF