• Title/Summary/Keyword: Adaptive complementary filter

Search Result 13, Processing Time 0.025 seconds

An Adaptive Complementary Filter For Gyroscope/Vision Integrated Attitude Estimation

  • Park, Chan Gook;Kang, Chang Ho;Hwang, Sanghyun;Chung, Chul Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.214-221
    • /
    • 2016
  • An attitude estimation algorithm which integrates gyroscope and vision measurements using an adaptive complementary filter is proposed in this paper. In order to make the filter more tolerant to vision measurement fault and more robust to system dynamics, fuzzy interpolator is applied. For recognizing the dynamic condition of the system and vision measurement fault, the cut-off frequency of the complementary filter is determined adaptively by using the fuzzy logic with designed membership functions. The performance of the proposed algorithm is evaluated by experiments and it is confirmed that proposed algorithm works well in the static or dynamic condition.

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

Vehicular Pitch Estimation Algorithm with ACF/IMMKF Based on GPS/IMU/OBD Data Fusion (GPS/IMU/OBD 융합기반 ACF/IMMKF를 이용한 차량 Pitch 추정 알고리즘)

  • Kim, Ju-won;Lee, Myung-su;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1837-1845
    • /
    • 2015
  • The longitudinal velocity is necessary for accurate vehicular positioning in urban environment. The pitch angle, which is a road slope, should be calculated to acquire the longitudinal velocity. However, it is impossible to consider very accurate pitch, when using a sensor and an algorithm. That's why process noise and positioning stimation error of IMU should be adjusted to the driving environment and fuse GPS, OBD data with ACF which consist of AKF, CF in this paper. Then, final pitch angle which is appropriate for driving environment is estimated by IMMKF in order to optimize the system model according to road slope models.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Complementary Filtering for the Self-Localization of Indoor Autonomous Mobile Robots (실내 자율형 주행로봇의 자기위치 추정을 위한 보상필터 설계)

  • Han, Jae-Won;Hwang, Jong-Hyon;Hong, Sung-Kyoung;Ryuh, Young-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1110-1116
    • /
    • 2010
  • This paper present an effective complementary filtering method using encoder and gyro sensors for the self-localization(including heading and velocity) of indoor mobile robot. The main idea of the proposed approach is to find the pros and cons of each sensor through a various maneuvering tests and to design of an adaptive complementary filter that works for the entire maneuvering phases. The proposed method is applied to an indoor mobile robot and the performances are verified through extensive experiments.

Balance Control of Drone using Adaptive Two-Track Control (적응적 Two-Track 기술을 이용한 드론의 균형 제어)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.666-671
    • /
    • 2019
  • The flight controller(FC) used in small-sized drone was developed as simple structure does not perform complex operations because it uses different MCU with large-sized drone. Also, the balance control of small-sized drone should be simpler than Kalman filter using complex filter and the method using Complementary filter has relatively more operations. So, the method to realize the balance control on small-sized drone effectively using two-track control operating as proper method for above is suggested in this research. This method is a system maintaining effective balance with simple structure and less operations by operating adaptively for the unbalance of the drone with the acceleration sensor with the advantage which performing accurate correction by data processing for long term change and gyroscope sensor maintaining the balance of the drone by data processing for short term change. It is confirmed that stable operation was performed mostly based on the test result for repeatable test more than 100 times using two-track control and it maintained normal state operation more than 98% excluding the difficulty of maintaining normal operation when meets sudden and rapid wind yet.

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.

Edge-adaptive demosaicking method for complementary color filter array of digital video cameras (디지털 비디오 카메라용 보색 필터를 위한 에지 적응적 색상 보간 방법)

  • Han, Young-Seok;Kang, Hee;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.174-184
    • /
    • 2008
  • Complementary color filter array (CCFA) is widely used in consumer-level digital video cameras, since it not only has high sensitivity and good signal-to-noise ratio in low-light condition but also is compatible with the interlaced scanning used in broadcast systems. However, the full-color images obtained from CCFA suffer from the color artifacts such as false color and zipper effects. These artifacts can be removed with edge-adaptive demosaicking (ECD) approaches which are generally used in rrimary color filter array (PCFA). Unfortunately, the unique array pattern of CCFA makes it difficult that CCFA adopts ECD approaches. Therefore, to apply ECD approaches suitable for CCFA to demosaicking is one of the major issues to reconstruct the full-color images. In this paper, we propose a new ECD algorithm for CCFA. To estimate an edge direction precisely and enhance the quality of the reconstructed image, a function of spatial variances is used as a weight, and new color conversion matrices are presented for considering various edge directions. Experimental results indicate that the proposed algorithm outperforms the conventional method with respect to both objective and subjective criteria.

15×15 Kernel Block Adaptive Median Filter based on LED Illumination Detection Algorithm for Low Rate CamCom (15×15 Kernel Block Adaptive Median Filter를 적용한 저속 카메라 통신용 LED 조명 검출 알고리즘 연구)

  • Han, Jungdo;Lee, Minwoo;Cha, Jae Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.143-150
    • /
    • 2018
  • With the rapid development of RF based high speed wireless communication technology, devices that can be applied to IoT networks based on RF bandwidth are rapidly spreading, nevertheless, the development speed of the RF communication is not possible to keep up with the spread of the RF band for wireless communication. In this situation, OWC technology that uses visible light source as a transmitter is attracting attention as a technology that can overcome the band exhaustion problem of RF based wireless communication technology. Although, due to the distortion of the LED illumination shape by camera exposure time and LED blinking period, the LED illumination detection rate is degraded and the RoI setting is inaccurate. In this paper, we propose an adaptive median filter applied LED illumination detection algorithm for low rate CamCom, it is possible to detect a clear RoI and LED illumination. This research will be able to play a role as a complementary material of RF based wireless communication technology efficiently.

Combining Adaptive Filtering and IF Flows to Detect DDoS Attacks within a Router

  • Yan, Ruo-Yu;Zheng, Qing-Hua;Li, Hai-Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.428-451
    • /
    • 2010
  • Traffic matrix-based anomaly detection and DDoS attacks detection in networks are research focus in the network security and traffic measurement community. In this paper, firstly, a new type of unidirectional flow called IF flow is proposed. Merits and features of IF flows are analyzed in detail and then two efficient methods are introduced in our DDoS attacks detection and evaluation scheme. The first method uses residual variance ratio to detect DDoS attacks after Recursive Least Square (RLS) filter is applied to predict IF flows. The second method uses generalized likelihood ratio (GLR) statistical test to detect DDoS attacks after a Kalman filter is applied to estimate IF flows. Based on the two complementary methods, an evaluation formula is proposed to assess the seriousness of current DDoS attacks on router ports. Furthermore, the sensitivity of three types of traffic (IF flow, input link and output link) to DDoS attacks is analyzed and compared. Experiments show that IF flow has more power to expose anomaly than the other two types of traffic. Finally, two proposed methods are compared in terms of detection rate, processing speed, etc., and also compared in detail with Principal Component Analysis (PCA) and Cumulative Sum (CUSUM) methods. The results demonstrate that adaptive filter methods have higher detection rate, lower false alarm rate and smaller detection lag time.