• Title/Summary/Keyword: Adaptive applications

Search Result 863, Processing Time 0.03 seconds

Applications of an Adaptive Reclosing in Power Distribution Systems (배전시스템에서 적응재폐로방식의 적용에 관한 연구)

  • Rim, Seong-Jeong;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.955-957
    • /
    • 1998
  • This paper presents an adaptive reclosing scheme to improve the reliability in power distribution systems. For an originated faults, this scheme can determine the number of reclosing attempts, so that minimizes the affect of electric facility and customers' load. To verify the effectiveness of the proposed scheme. numerical simulation which calculates a various indices to consider the reliability and the effect of electric facility, is carried out with actual field data. Results show that the proposed scheme can be applicable to field operation.

  • PDF

Adaptive Bilinear Lattice Filter(I)-Bilinear Lattice Structure (적응 쌍선형 격자필터(I) - 쌍선형 격자구조)

  • Heung Ki Baik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.26-33
    • /
    • 1992
  • This paper presents lattice structure of bilinear filter and the conversion equations from lattice parameters to direct-form parameters. Billnear models are attractive for adaptive filtering applications because they can approximate a large class of nonlinear systems adequately, and usually with considerable parsimony in the number of coefficients required. The lattice filter formulation transforms the nonlinear filtering problem into an equivalent multichannel linear filtering problem and then uses multichannel lattice filtering algorithms to solve the nonlinear filtering problem. The lattice filters perform a Gram-Schmidt orthogonalization of the input data and have very good easily extended to more general nonlinear output feedback structures.

  • PDF

Radio Resource Metric Estimation (RRME) Mechanism for Multimedia Service Applications based on a CDMA Communication System

  • Lee Yeon-Woo;Cho Kwang-Moon;Hur Kyeong
    • International Journal of Contents
    • /
    • v.2 no.2
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, we propose a predictive resource metric region (RMR) based radio resource metric estimation (RRME) mechanism, which utilizes a resource metric mapping function (RMMF), both of which permit efficient inter-working between the physical layer and higher layers for envisaging multimedia service applications over a CDMA communication system platform. The RMR can provide the acceptable resource region where QoS and acceptable link quality can be guaranteed with an achievable resource margin to be utilized in terms of capacity margin, the degree of confidence (DCL) of user, second-order statistics of Eb/Io. With predicted capacity margin and variance, DCL can deliver decision parameters with which an adaptive QoS based admission control can perform well taking capacity and resource availability into account in a dynamic and predictive manner. Combined with advanced techniques such as adaptive modulation or rate control and power control, the proposed mechanism can adjust the conventional stringent link quality information efficiently, and deliver accurate information of the resource availability. Thus, these can guarantee the maximization of resource utilization of multimedia service applications.

  • PDF

Performance Improvement of Application Programs using an Adaptive Sampling Method (가변 샘플링 기법을 이용한 프로그램 성능 개선)

  • Jo, Jeongho;Suh, Hyo-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.149-154
    • /
    • 2017
  • Performance of the mobile devices, such as Smartphones, is sensible by the early-stage of the execution of the applications. To addressing this issue, the dynamic frequency scaling by the ondemand governor has an inherent weakness by the sampling period that may induces some delay in the execution time of the applications. In this paper, we propose an adaptive sampling method that varying the sampling period of the ondemand governor in accordance with the execution of the applications. By the experiment result, the proposed method outperforms 3.34% in early-stage of the execution time that impacts the sensible performance, and exhibits negligible differences in terms of the energy consumption.

Adaptive Memory Controller for High-performance Multi-channel Memory

  • Kim, Jin-ku;Lim, Jong-bum;Cho, Woo-cheol;Shin, Kwang-Sik;Kim, Hoshik;Lee, Hyuk-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.808-816
    • /
    • 2016
  • As the number of CPU/GPU cores and IPs in SOC increases and applications require explosive memory bandwidth, simultaneously achieving good throughput and fairness in the memory system among interfering applications is very challenging. Recent works proposed priority-based thread scheduling and channel partitioning to improve throughput and fairness. However, combining these different approaches leads to performance and fairness degradation. In this paper, we analyze the problems incurred when combining priority-based scheduling and channel partitioning and propose dynamic priority thread scheduling and adaptive channel partitioning method. In addition, we propose dynamic address mapping to further optimize the proposed scheme. Combining proposed methods could enhance weighted speedup and fairness for memory intensive applications by 4.2% and 10.2% over TCM or by 19.7% and 19.9% over FR-FCFS on average whereas the proposed scheme requires space less than TCM by 8%.

Ambient Intelligence in Distributed Modular Systems

  • Ngo Trung Dung;Lund Henrik Hautop
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.421-426
    • /
    • 2004
  • Analyzing adaptive possibilities of agents in multi-agents system, we have discovered new aspects of ambient intelligence in distributed modular systems using intelligent building blocks (I-BLOCKS) [1]. This paper describes early scientific researches related to technical design, applicable experiments and evaluation of adaptive processing and information interaction among I-BLOCKS allowing users to easily develop ambient intelligence applications. The processing technology presented in this paper is embedded inside each DUPLO1 brick by microprocessor as well as selected sensors and actuators in addition. Behaviors of an I-BLOCKS modular structure are defined by the internal processing functionality of each I-Blocks in such structure and communication capacities between I-BLOCKS. Users of the I-BLOCKS system can do 'programming by building' and thereby create specific functionalities of a modular structure of intelligent artefacts without the need to learn and use traditional programming language. From investigating different effects of modem artificial intelligence, I-BLOCKS we have developed might possibly contain potential possibilities for developing applications in ambient intelligence (AmI) environments. To illustrate these possibilities, the paper presents a range of different experimental scenarios in which I-BLOCKS have been used to set-up reconfigurable modular systems. The paper also reports briefly about earlier experiments of I-BLOCKS in different research fields, allowing users to construct AmI applications by a just defined concept of modular artefacts [3].

  • PDF

Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics (개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석)

  • Sung, Jihyun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.303-326
    • /
    • 2023
  • Mathematics is a discipline with a strong systemic structure, and learning deficits in previous stages have a great influence on the next stages of learning. Therefore, it is necessary to frequently check whether students have learned well and to provide immediate feedback, and for this purpose, intelligent tutoring system(ITS) can be used in math education. For this reason, it is necessary to reveal how the intelligent tutoring system is effective in personalized adaptive learning. The purpose of this study is to investigate the functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics. To achieve this goal, literature reviews and surveys with students were applied to derive implications. Based on the literature reviews, the functions of intelligent tutoring system for personalized adaptive learning were derived. They can be broadly divided into diagnosis and evaluation, analysis and prediction, and feedback and content delivery. The learning and lesson plans were designed by them and it was applied to fifth graders in elementary school for about three months. As a result of this study, intelligent tutoring system was mostly supporting personalized adaptive learning in mathematics in several ways. Also, the researcher suggested that more sophisticated materials and technologies should be developed for effective personalized adaptive learning in mathematics by using intelligent tutoring system.

Filtering Motion Vectors using an Adaptive Weight Function (적응적 가중치 함수를 이용한 모션 벡터의 필터링)

  • 장석우;김진욱;이근수;김계영
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1474-1482
    • /
    • 2004
  • In this paper, we propose an approach for extracting and filtering block motion vectors using an adaptive weight function. We first extract motion vectors from a sequence of images by using size-varibale block matching and then process them by adaptive robust estimation to filter out outliers (motion vectors out of concern). The proposed adaptive robust estimation defines a continuous sigmoid weight function. It then adaptively tunes the sigmoid function to its hard-limit as the residual errors between the model and input data are decreased, so that we can effectively separate non-outliers (motion vectors of concern) from outliers with the finally tuned hard-limit of the weight function. The experimental results show that the suggested approach is very effective in filtering block motion vectors.

Non-linear Adaptive Attitude Controller Design of Quadrotor UAV (쿼드로터 무인기 비선형 적응 자세제어기 설계)

  • Choi, In-Ho;Park, Mu-Hyuk;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2421-2427
    • /
    • 2012
  • This paper is discussed the design on non-linear adaptive attitude controller for quadrotor UAV. Quadrotor UAV featured to have four rotor, required the special controller to compensate for the model parameter uncertainties as the unstable nonlinear system. In this research, we designed the adaptive controller to compensate for the payload changes even though it is changed with industrial applications. Especially, based on the mathematical model of UAV, non-linear adaptive controller is suggested and the stability is verified using the Lyapunov function and finally proved its performance and effectiveness of update laws with various payload by simulation.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF