• Title/Summary/Keyword: Adaptive Security System

Search Result 105, Processing Time 0.024 seconds

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Intrusion Detection for Black Hole and Gray Hole in MANETs

  • She, Chundong;Yi, Ping;Wang, Junfeng;Yang, Hongshen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1721-1736
    • /
    • 2013
  • Black and gray hole attack is one kind of routing disturbing attacks and can bring great damage to the network. As a result, an efficient algorithm to detect black and gray attack is important. This paper demonstrate an adaptive approach to detecting black and gray hole attacks in ad hoc network based on a cross layer design. In network layer, we proposed a path-based method to overhear the next hop's action. This scheme does not send out extra control packets and saves the system resources of the detecting node. In MAC layer, a collision rate reporting system is established to estimate dynamic detecting threshold so as to lower the false positive rate under high network overload. We choose DSR protocol to test our algorithm and ns-2 as our simulation tool. Our experiment result verifies our theory: the average detection rate is above 90% and the false positive rate is below 10%. Moreover, the adaptive threshold strategy contributes to decrease the false positive rate.

Multiple Moving Person Tracking Based on the IMPRESARIO Simulator

  • Kim, Hyun-Deok;Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.331-336
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. To achieve this goal, we present a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers has been also presented. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

3D Walking Human Detection and Tracking based on the IMPRESARIO Framework

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. To achieve this goal, we propose a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers have been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

An Optimum-adaptive Intrusion Detection System Using a Mobile Code (모바일 코드를 이용한 최적적응 침입탐지시스템)

  • Pang Se-chung;Kim Yang-woo;Kim Yoon-hee;Lee Phil-Woo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.45-52
    • /
    • 2005
  • A damage scale of information property has been increasing rapidly by various illegal actions of information systems, which result from dysfunction of a knowledge society. Reinforcement in criminal investigation requests of network security has accelerated research and development of Intrusion Detection Systems(IDSs), which report intrusion-detection about these illegal actions. Due to limited designs of early IDSs, it is hard for the IDSs to cope with tricks to go around IDS as well as false-positive and false-negative trials in various network environments. In this paper, we showed that this kind of problems can be solved by using a Virtual Protocol Stack(VPS) that possesses automatic learning ability through an optimum-adaptive mobile code. Therefore, the enhanced IDS adapts dynamically to various network environments in consideration of monitored and self-learned network status. Moreover, it is shown that Insertion/Evasion attacks can be actively detected. Finally, we discussed that this method can be expanded to an intrusion detection technique that possesses adaptability in the various mixed network environments.

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

Illumination Environment Adaptive Real-time Video Surveillance System for Security of Important Area (중요지역 보안을 위한 조명환경 적응형 실시간 영상 감시 시스템)

  • An, Sung-Jin;Lee, Kwan-Hee;Kwon, Goo-Rak;Kim, Nam-Hyung;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.116-125
    • /
    • 2007
  • In this paper, we propose a illumination environment adaptive real-time surveillance system for security of important area such as military bases, prisons, and strategic infra structures. The proposed system recognizes movement of objects on the bright environments as well as in dark illumination. The procedure of proposed system may be summarized as follows. First, the system discriminates between bright and dark with input image distribution. Then, if the input image is dark, the system has a pre-processing. The Multi-scale Retinex Color Restoration(MSRCR) is processed to enhance the contrast of image captured in dark environments. Secondly, the enhanced input image is subtracted with the revised background image. And then, we take a morphology image processing to obtain objects correctly. Finally, each bounding box enclosing each objects are tracked. The center point of each bounding box obtained by the proposed algorithm provides more accurate tracking information. Experimental results show that the proposed system provides good performance even though an object moves very fast and the background is quite dark.

Adaptive Intrusion Detection Algorithm based on Artificial Immune System (인공 면역계를 기반으로 하는 적응형 침입탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2003
  • The trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online, or an offline internet, so it is expected to make a problem more and more. The goal of intrusion detection is to identify unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators in real time. In fact, the general security system based on Internet couldn't cope with the attack properly, if ever. other regular systems have depended on common vaccine softwares to cope with the attack. But in this paper, we will use the positive selection and negative selection mechanism of T-cell, which is the biologically distributed autonomous system, to develop the self/nonself recognition algorithm and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. For making it come true, we will apply AIS to the network environment, which is a computer security system.

Motion Detection using Adaptive Background Image and Pixel Space (적응적 배경영상과 픽셀 간격을 이용한 움직임 검출)

  • 지정규;이창수;오해석
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.3
    • /
    • pp.45-54
    • /
    • 2003
  • Security system with web camera remarkably has been developed at an Internet era. Using transmitted images from remote camera, the system can recognize current situation and take a proper action through web. Existing motion detection methods use simply difference image, background image techniques or block matching algorithm which establish initial block by set search area and find similar block. But these methods are difficult to detect exact motion because of useless noise. In this paper, the proposed method is updating changed background image as much as $N{\times}M$pixel mask as time goes on after get a difference between imput image and first background image. And checking image pixel can efficiently detect motion by computing fixed distance pixel instead of operate all pixel.

  • PDF

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.