• Title/Summary/Keyword: Adaptive PCA

Search Result 36, Processing Time 0.036 seconds

Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks (IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

An Effeicient Fingerprint Recognition Using Adaptive Principal Component Analysis (적응적 주요성분분석 기법을 이용한 효율적인 지문인식)

  • Sung, Ju-Won;Cho, Yong-hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.177-183
    • /
    • 2001
  • This paper proposes an efficient method for recognizing the fingerprint using the extracted features by adaptive principal component analysis(PCA). The adaptive PCA is implemented by a single-layer neural network for extracting the linear features of fingerprint data. And, the extracted data are transformed into binary data for reducing storage space and transmission time. The proposed method has been applied to recognize the 100 fingerprint data. The simulation results show that the recognitions are all successful and capable of about ${\pm}8^{\circ}$ rotated data.

  • PDF

Joint PCA and Adaptive Threshold for Fault Detection in Wireless Sensor Networks (무선 센서 네트워크에서 장애 검출을 위한 결합 주성분분석과 적응형 임계값)

  • Dang, Thien-Binh;Vo, Vi Van;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.69-71
    • /
    • 2020
  • Principal Component Analysis (PCA) is an effective data analysis technique which is commonly used for fault detection on collected data of Wireless Sensor Networks (WSN), However, applying PCA on the whole data make the detection performance low. In this paper, we propose Joint PCA and Adaptive Threshold for Fault Detection (JPATAD). Experimental results on a real dataset show a remarkably higher performance of JPATAD comparing to conventional PCA model in detection of noise which is a popular fault in collected data of sensors.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

Humor Document Recommendation using Adaptive K-NN with PCA (PCA 및 적응형 k-NN을 이용한 유머문서의 추천)

  • 이종우;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.133-136
    • /
    • 2000
  • 우리는 인터넷을 통한 사용자의 선호도(preference)를 분석하고 협력적 여과 기술을 학습하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. MrHumor에서는 사용자집합이 유머문서 집합에 대하여 보여준 등급매김값을 토대로 사용집합의 백터공간(vector space)를 설정하고 노이즈에 강하면서 효율적인 학습을 위해 선형 PCA를 이용하여 축소된 2차원 공간상에서 유머문서의 통계적 특성을 반영하여 적응형 k-NN으로 지엽성을 적적히 조절하여 새로운 문서에 대한 선호도를 추정하게 된다.

  • PDF

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

Modified Recursive PC (수정된 반복 주성분 분석 기법에 대한 연구)

  • Kim, Dong-Gyu;Kim, Ah-Hyoun;Kim, Hyun-Joong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.963-977
    • /
    • 2011
  • PCA(Principal Component Analysis) is a well-studied statistical technique and an important tool for handling multivariate data. Although many algorithms exist for PCA, most of them are unsuitable for real time applications or high dimensional problems. Since it is desirable to avoid extensive matrix operations in such cases, alternative solutions are required to calculate the eigenvalues and eigenvectors of the sample covariance matrix. Erdogmus et al. (2004) proposed Recursive PCA(RPCA), which is a fast adaptive on-line solution for PCA, based on the first order perturbation theory. It facilitates the real-time implementation of PCA by recursively approximating updated eigenvalues and eigenvectors. However, the performance of the RPCA method becomes questionable as the size of newly-added data increases. In this paper, we modified the RPCA method by taking advantage of the mathematical relation of eigenvalues and eigenvectors of sample covariance matrix. We compared the performance of the proposed algorithm with that of RPCA, and found that the accuracy of the proposed method remarkably improved.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.