• 제목/요약/키워드: Adaptive PCA

검색결과 36건 처리시간 0.021초

IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지 (Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

적응적 주요성분분석 기법을 이용한 효율적인 지문인식 (An Effeicient Fingerprint Recognition Using Adaptive Principal Component Analysis)

  • 성주원;조용현
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.177-183
    • /
    • 2001
  • This paper proposes an efficient method for recognizing the fingerprint using the extracted features by adaptive principal component analysis(PCA). The adaptive PCA is implemented by a single-layer neural network for extracting the linear features of fingerprint data. And, the extracted data are transformed into binary data for reducing storage space and transmission time. The proposed method has been applied to recognize the 100 fingerprint data. The simulation results show that the recognitions are all successful and capable of about ${\pm}8^{\circ}$ rotated data.

  • PDF

무선 센서 네트워크에서 장애 검출을 위한 결합 주성분분석과 적응형 임계값 (Joint PCA and Adaptive Threshold for Fault Detection in Wireless Sensor Networks)

  • Dang, Thien-Binh;Vo, Vi Van;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.69-71
    • /
    • 2020
  • Principal Component Analysis (PCA) is an effective data analysis technique which is commonly used for fault detection on collected data of Wireless Sensor Networks (WSN), However, applying PCA on the whole data make the detection performance low. In this paper, we propose Joint PCA and Adaptive Threshold for Fault Detection (JPATAD). Experimental results on a real dataset show a remarkably higher performance of JPATAD comparing to conventional PCA model in detection of noise which is a popular fault in collected data of sensors.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

GA 기반 TSK 퍼지 분류기의 설계와 응용 (A Design of GA-based TSK Fuzzy Classifier and Its Application)

  • 곽근창;김승석;유정웅;김승석
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.754-759
    • /
    • 2001
  • 본 논문은 주성분분석기법, 퍼지 클러스터링, ANFIS(Adaptive Neuro-Fuzzy Inference System)와 하이브리드 GA(Hybrid Genetic Algorithm)를 이용하여 GA 기반 TSK(Takagi-Sugeno-Kang) 퍼지 분류기를 제안한다. 먼저 구조동정은 주성분분석기법을 이용하여 데이터 성분간의 상관관계가 제거하도록 입력데이터를 변환하고, FCM(Fuzzy c-means) 클러스터링과 ANFIS의 융합을 통해 초기 TSK 퍼지 분류기를 구축한다. 구축된 초기 분류기의 파라미터를 초기집단으로 발생시켜 AGA(Adaptive GA)와 RLSE(Recursive Least Square Estimate)에 의해 파라미터 동정을 수행한다. 이렇게 함으로서 퍼지 클러스터링의 효율적인 입력공간분할로 ANFIS의 문제점을 해결할 수 있고, AGA에 의해 집단의 다양성 유지와 전역적인 최적해의 수렴을 가속화할 수 있다. 마지막으로, 제안된 방법은 Iris 데이터 분류문제에 적용하여 이전의 다른 논문에 비해 좋은 성능을 보임을 알 수 있었다.

  • PDF

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

PCA 및 적응형 k-NN을 이용한 유머문서의 추천 (Humor Document Recommendation using Adaptive K-NN with PCA)

  • 이종우;장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.133-136
    • /
    • 2000
  • 우리는 인터넷을 통한 사용자의 선호도(preference)를 분석하고 협력적 여과 기술을 학습하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. MrHumor에서는 사용자집합이 유머문서 집합에 대하여 보여준 등급매김값을 토대로 사용집합의 백터공간(vector space)를 설정하고 노이즈에 강하면서 효율적인 학습을 위해 선형 PCA를 이용하여 축소된 2차원 공간상에서 유머문서의 통계적 특성을 반영하여 적응형 k-NN으로 지엽성을 적적히 조절하여 새로운 문서에 대한 선호도를 추정하게 된다.

  • PDF

GA기반 TSK 퍼지 분류기의 설계 및 응용 (The Design of GA-based TSK Fuzzy Classifier and Its application)

  • 곽근창;김승석;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

수정된 반복 주성분 분석 기법에 대한 연구 (Modified Recursive PC)

  • 김동규;김아현;김현중
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.963-977
    • /
    • 2011
  • 다변량 자료를 분석함에 있어 자료의 차원을 축소하는데 활용되는 중요한 툴 중 하나인 PCA 분석(주성분 분석, Principal Component Analysis)을 실시간으로 처리해야 하는 적용 분야가 최근 늘고 있다. PCA 분석에서는 표본 공분산 행렬의 고유값과 고유벡터를 도출하는 것이 관건인데, 자료의 양이 방대하며 고차원인 경우 이를 실시간으로 수행하기에는 어려움이 따른다. 이러한 문제점을 해결하기 위해서 Erdogmus 등 (2004)는 일차 섭동 이론(first order perturbation theory)을 활용하여 공분산 행렬의 고유값과 고유벡터를 추정하는 Recursive PCA 방법을 제안했다. 이 방법은 추가된 자료의 양이 많지 않은 경우는 상당히 정확하지만, 추가된 자료의 양이 많아짐에 따라 오차도 커진다는 한계를 가지고 있다. 본 논문은 공분산 행렬의 고유값과 고유벡터가 가지고 있는 수학적 관계를 이용하여 Erdogmus 등 (2004)가 제안한 Recursive PCA 방법을 수정한 Modi ed Recursive PCA 방법을 제안하다. 또한, 모의 실험을 통해 Recursive PCA 방법과 Modi ed Recursive PCA 방법에서의 고유값과 고유벡터 추정값의 정확도를 비교해 보았으며 그 결과 기존 Recursive PCA 방법 보다 정확한 추정이 가능함을 확인할 수 있었다.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.