• 제목/요약/키워드: Adaptive Optimization

검색결과 587건 처리시간 0.028초

Symbiotic Organisms Search for Constrained Optimization Problems

  • Wang, Yanjiao;Tao, Huanhuan;Ma, Zhuang
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.210-223
    • /
    • 2020
  • Since constrained optimization algorithms are easy to fall into local optimum and their ability of searching are weak, an improved symbiotic organisms search algorithm with mixed strategy based on adaptive ε constrained (ε_SOSMS) is proposed in this paper. Firstly, an adaptive ε constrained method is presented to balance the relationship between the constrained violation degrees and fitness. Secondly, the evolutionary strategies of symbiotic organisms search algorithm are improved as follows. Selecting different best individuals according to the proportion of feasible individuals and infeasible individuals to make evolutionary strategy more suitable for solving constrained optimization problems, and the individual comparison criteria is replaced with population selection strategy, which can better enhance the diversity of population. Finally, numerical experiments on 13 benchmark functions show that not only is ε_SOSMS able to converge to the global optimal solution, but also it has better robustness.

연비를 고려한 차량 및 적응형 순항 제어 파라미터의 크리깅 대체모델 기반 최적설계 (Kriging Surrogate Model-based Design Optimization of Vehicle and Adaptive Cruise Control Parameters Considering Fuel Efficiency)

  • 김한수;송유호;이승하;허건수;이태희
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.817-823
    • /
    • 2017
  • 기존에는 연비를 고려한 적응형 순항 제어 알고리즘 개발과 연비 등의 성능을 고려한 적응형 순항 제어 시스템 개발 연구가 수행되었지만, 제어 파라미터를 포함한 차량 파라미터의 적응형 순항 제어에 대한 최적설계 연구는 미흡한 편이다. 이에 본 논문에서는 연비, 추종성, 승차감, 안전거리를 고려한 차량 및 제어 파라미터 최적설계를 수행하고자 한다. 이를 위해 차량 거동의 성능 측정 방법을 제안하고 적응형 순항 제어 시스템을 구축하였다. 그리고 성능에 주요한 영향을 미치는 차량 파라미터를 선별하여 이를 토대로 순차적 실험계획을 통해 크리깅 대체모델을 구축하였고, 연비를 최대화하며 목표 성능을 만족하는 크리깅 대체모델 기반 최적설계를 수행하였다.

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.

적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용 (Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

  • Zheng, Xiaoyu;Ishikawa, Jun;Sugiyama, Tomoyuki;Maruyama, Yu
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.434-441
    • /
    • 2017
  • Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

적응 어레이 프로세싱 (Adaptive array processing)

  • 이상철
    • 전기의세계
    • /
    • 제29권9호
    • /
    • pp.584-593
    • /
    • 1980
  • Conventional radar antenna systems are susceptible to performance degradation caused by unwanted signals received via the antenna sidelobes and/or mainlobes. Adaptive array systems offer possible solution to this interference problem by automatically steering nulls to unwanted signals providing significant system performance improvement. Another important andvantage of the adaptive array is its self-optimization capability which uses the collective incoming noise data for the nulling purposes. This paper provides a tutorial introduction to adaptive arrays as well as some new development of recent research in this area. Optimum link between the antenna theory and signal processing has been sought by illustrating the gain patterns and output signal-to-noise ratio. Signal acqusition methods are shown including a new attempt of the use of spread-spectrum techniques in conjuction with array systems.

  • PDF

Minimum Disturbance 기법을 적용한 AM-SCS-MMA 적응 등화 알고리즘의 성능 해석 (A Performance Analysis of AM-SCS-MMA Adaptive Equalization Algorithm based on the Minimum Disturbance Technique)

  • 임승각
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.81-87
    • /
    • 2016
  • 본 논문에서는 기존 MMA 적응 등화 알고리즘의 안정성과 낮은 신호대 잡음비에서 robustness를 개선하기 위해 adaptive modulus와 miniumum-disturbance 기법을 적용한 AM-SCS-MMA (Adaptive Modulus-Soft Constraint Satisfaction-MMA) 알고리즘의 성능을 해석하였다. AM-SCS-MMA는 적응 등화를 비용 함수를 최소화하기 위해 adaptive modulus와 기존의 LMS 나 gradient descent algorithm 대신 deterministic optimization problem의 minimum-disturbance 기법을 적용하여 탭 계수를 갱신하므로서 채널에서 발생되는 진폭과 위상 찌그러짐에 의한 부호간 간섭을 동시에 줄이면서 등화 필터의 안정성 및 다양한 잡음에 대한 roburstness를 개선시킬 수 있다. 이의 개선 성능을 확인하기 위해 시뮬레이션을 수행하였으며 등화기 출력 성상도, 잔류 isi, MSE와 채널 추적 능력을 나타내는 EMSE (Excess MSE) 및 SER을 적용하였다. 컴퓨터 시뮬레이션의 결과 AM-SCS-MMA는 MMA보다 잔류 isi와 MSE에서는 수렴 속도는 늦지만 정상 상태 이후 잔여량이 감소되고 열악한 신호대 잡음비에서 robustness가 있었지만, 채널 추적 능력에서는 열화됨을 확인하였다.