References
- Alvarez, A., Bertram, V., Gualdesi, L., 2009. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth. Ocean Eng. 36 (1), 105-112. https://doi.org/10.1016/j.oceaneng.2008.08.006
- Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: recent developments and future applications. In: Underwater Technology, 2004. UT'04. 2004 International Symposium on IEEE, pp. 195-200.
- Baowei, S., Xinjing, W., Peng, W., 2017. Predictions of AUV's hydrodynamic parameters based on variable-fidelity modeling. J. Mech. Eng. 53 (18), 176-182. https://doi.org/10.3901/jme.2017.17.176
- S. S. D. Bingham, Optimization Test Problems, http://www.sfu.ca/-ssurjano/optimization.html.
- Dong, H., Song, B., Dong, Z., Wang, P., 2016. Multi-start space reduction (MSSR) surrogate-based global optimization method. Struct. Multidiscip. Optim. 54 (4), 1-20. https://doi.org/10.1007/s00158-016-1491-5
- Dong, H., Song, B., Wang, P., Dong, Z., 2017a. Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems. Struct. Multidiscip. Optim. 1-25.
- Dong, H., Song, B., Wang, P., 2017b. Kriging-based optimization design for a new style shell with black box constraints. J. Algorithm Comput. Technol. 11 (3), 234-245. https://doi.org/10.1177/1748301817709601
- Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26 (4), 424-436. https://doi.org/10.1109/48.972073
- Forrester, A.I.J., Keane, A.J., 2009. Recent advances in surrogate-based optimization. Prog. Aero. Sci. 45 (1), 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
- Gao, T., Wang, Y., Pang, Y., Cao, J., 2016. Hull shape optimization for autonomous underwater vehicles using cfd. Eng. App. Computat. Fluid Mech. 10 (1), 599-607.
- Garg, N., Kenway, G.K.W., Lyu, Z., Martins, J.R.R.A., Young, Y.L., 2015. High-fidelity hydrodynamic shape optimization of a 3-d hydrofoil. J. Ship Res. 59 (4), 209-226. https://doi.org/10.5957/JOSR.59.4.150046
- Ginsbourger, D., Le Riche, R., Carraro, L., 2010. Kriging is well-suited to parallelize optimization. Computat. Intell. Expen. Opti. Probl. 2, 131-162.
- Graver, J., 2005. Grady, Underwater gliders: dynamics, control and design. J. Fluid Eng. 127 (3), 523-528. https://doi.org/10.1115/1.1899169
- Hildebrand, J.A., D'Spain, G.L., Roch, M.A., Porter, M.B., 2009. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region. Tech. rep.. Scripps Institution of Oceanography la Jolla ca.
- Jin, R., Chen, W., Sudjianto, A., 2002. On sequential sampling for global metamodeling in engineering design. Proc.DETC 2, 539-548.
- Jones, D.R., 2001. A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21 (4), 345-383. https://doi.org/10.1023/A:1012771025575
- Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive black-box functions. J. Global Optim. 13 (4), 455-492. https://doi.org/10.1023/A:1008306431147
- Joung, T.H., Sammut, K., He, F., Lee, S.K., 2012. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. Int. J. Naval Architect. Ocean Eng. 4 (1), 44-56. https://doi.org/10.2478/IJNAOE-2013-0077
- Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the witwatersrand. OR 4 (1), 18-18.
- Kulfan, B.M., 2008. Universal parametric geometry representation method. J. Aircraft 45 (1), 142-158. https://doi.org/10.2514/1.29958
- Leifsson, L., Koziel, S., Ogurtsov, S., 2013. Hydrodynamic shape optimization of axisymmetric bodies using multi-fidelity modeling. Simul. Model. Methodol. Technol. App. 209-223.
- Liu, J., Han, Z., Song, W., 2012. Comparison of infill sampling criteria in krigingbased aerodynamic optimization. In: 28th Congress of the International Council of the Aeronautical Sciences, pp. 23-28.
- Liu, J., Song,W., Han, Z., Zhang, Y., 2017. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Struct. Multidiscip. Optim. 55 (3), 925-943. https://doi.org/10.1007/s00158-016-1546-7
- Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer experiments. Stat. Sci. 4 (4), 409-423. https://doi.org/10.1214/ss/1177012413
- Sbester, A., Leary, S.J., Keane, A.J., 2004. A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscip. Optim. 27 (5), 371-383. https://doi.org/10.1007/s00158-004-0397-9
- Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. Comput. Graph. 20 (4), 151-160. https://doi.org/10.1145/15886.15903
- Sherman, J., Davis, R., Owens, W.B., Valdes, J., 2001. The autonomous underwater glider 'spray'. IEEE J. Ocean. Eng. 26 (4), 437-446. https://doi.org/10.1109/48.972076
- Stommel, H., 1989. The slocum mission. Oceanography 2 (1), 22-25. https://doi.org/10.5670/oceanog.1989.26
- Sun, C., Song, B., Wang, P., 2015. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. Inter. J. Naval Architect. Ocean Eng. 7 (6), 995-1006. https://doi.org/10.1515/ijnaoe-2015-0069
- Sun, C., Song, B., Wang, P., Wang, X., 2017. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target. Int. J. Naval Architect. Ocean Eng. 9 (6), 693-704. https://doi.org/10.1016/j.ijnaoe.2016.12.003
- Viana, F.A., Haftka, R.T., 2010. Surrogate-based optimization with parallel simulations using the probability of improvement. In: 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 13-15. Fort Worth USA.
- Volpi, S., Diez, M., Stern, F., 2017. Towards the high-fidelity multidisciplinary design optimization of a 3d composite material hydrofoil. In: Proceedings of the VII International Congress on Computational Methods in Marine Engineering.
- Webb, D.C., Simonetti, P.J., Jones, C.P., 2001. Slocum: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26 (4), 447-452. https://doi.org/10.1109/48.972077
- Young, Y.L., Motley, M.R., Barber, R., Chae, E.J., Garg, N., 2016. Adaptive composite marine propulsors and turbines: progress and challenges. Appl. Mech. Rev. 68 (6), 060803-060834. https://doi.org/10.1115/1.4034659
- Zarruk, G.A., Brandner, P.A., Pearce, B.W., Phillips, A.W., 2014. Experimental study of the steady fluid-structure interaction of flexible hydrofoils. J. Fluid Struct. 51, 326-343. https://doi.org/10.1016/j.jfluidstructs.2014.09.009
- Zhang, D., Song, B.,Wang, P., Chen, X., 2017. Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation. Struct. Multidiscip. Optim. 55 (4), 1483-1502. https://doi.org/10.1007/s00158-016-1575-2
Cited by
- Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology vol.11, pp.4, 2018, https://doi.org/10.3390/en11040694
- Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine vol.12, pp.24, 2018, https://doi.org/10.3390/en12244679
- Shape optimisation of blended-wing-body underwater gliders based on free-form deformation vol.15, pp.3, 2018, https://doi.org/10.1080/17445302.2019.1611989
- Research on the hull form optimization using the surrogate models vol.15, pp.1, 2018, https://doi.org/10.1080/19942060.2021.1915875
- Performance characteristics of a Novel point Absorber-type WEC based on counter-rotating self-adaptable movement mechanism vol.43, pp.7, 2021, https://doi.org/10.1080/15567036.2019.1632979
- Shape Optimization for A Conventional Underwater Glider to Decrease Average Periodic Resistance vol.35, pp.5, 2021, https://doi.org/10.1007/s13344-021-0064-6