• Title/Summary/Keyword: Adaptive Neural Controller

Search Result 391, Processing Time 0.029 seconds

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

Design of Adaptive Fuzzy Logic Controller for Crane System (크레인 제어를 위한 적응 퍼지 제어기의 설계)

  • Lee, J.;Jeong, H.;Park, J.H.;Lee, H.;Hwang, G.;Mun, K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2714-2716
    • /
    • 2005
  • In this paper, we designed the adaptive fuzzy logic controller for crane system using neural network and real-coding genetic algorithm. The proposed algorithm show a good performance on convergence velocity and diversity of population among evolutionary computations. The weights of neural network is adaptively changed to tune the input/output gain of fuzzy logic controller. And the genetic algorithm was used to leam the feedforward neural network. As a result of computer simulation, the proposed adaptive fuzzy logic controller is superior to conventional controllers in moving and modifying the destination point.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Adaptive Control Based on Fuzzy-CMAC Neural Networks (Fuzzy-CMAC 신경회로망 기반 적응제어)

  • Choi, J.S.;Kim, H.S.;Kim, S.J.;Kwon, O.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1186-1188
    • /
    • 1996
  • Neural networks and fuzzy systems have attracted the attention of many researehers recently. In general, neural networks are used to obtain information about systems from input/output observation and learning procedure. On the other hand, fuzzy systems use fuzzy rules to identify or control systems. In this paper we present a generalized FCMAC(Fuzzified Cerebellar Model Articulation Controller) networks, by integrating fuzzy systems with the CMAC(Cerebellar Model Articulation Controller) networks. We propose a direct adaptive controller design based on FCMAC(fuzzified CMAC) networks. Simulation results reveal that the proposed adaptive controller is practically feasible in nonlinear plant control.

  • PDF

Design of Adaptive Fuzzy Logic Controller using Tabu search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hoon;Hwang, Gi-Hyun;Kim, Hyung-Su;Mun, Kyung-Jun;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.34-36
    • /
    • 2000
  • This paper proposes the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gain of input-output variables of fuzzy logic controller and weights of neural network using Tabu search. Neural network used to tune the output gain of FLC adaptively. We have weights of neural network learned using back propagation algorithm. We performed the nonlinear simulation on an single-machine infinite system to prove the efficiency of the proposed method. The proposed AFLC showed the better performance than PD controller in terms of the settling time and damping effect, for power system operation condition.

  • PDF

Design of Neural Network Controllers for High Speed Induction Motor Drives (초고속 유도전동기 구동을 위한 신경회로망 제어기 설계)

  • 김윤호;이병순;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 1997
  • In this paper, a high speed motor drive system using an indirect adaptive neural network controller is proposed. In the variable high speed motor drives, the speed response can be deteriorated by long settling time and high overshoot. To obtain a good dynamical performance, an adaptive feedforward controller consisted of Neural Network Controller(NNC) and Neural Network Emulator(NNE) is applied. The NNE is used to identify the parameters and characteristics of high speed motor. To train the controller, the weights are dynamically adjusted using the back propagation algorithm. Computer simulation and implementation of the proposed system is described.

  • PDF

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Intelligent adaptive controller for a process control

  • Kim, Jin-Hwan;Lee, Bong-Guk;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.378-384
    • /
    • 1993
  • In this paper, an intelligent adaptive controller is proposed for the process with unmodelled dynamics. The intelligent adaptive controller consists of the numeric adaptive controller and the intelligent tuning part. The continuous scheme is used for the numeric adaptive controller to avoid the problems occurred in the discrete time schemes. The adaptive controller is adopted to the process with time delay. It is an implicit adaptive algorithm based on GMV using the emulator. The tuning part changes the design parameters in the control algorithm. It is a multilayer neural network trained by robustness analysis data. The proposed method can improve the robustness of the adaptive control system because the design parameters are tuned according to the operating points of the process. Through the simulation, robustnesses are shown for intelligent adaptive controller. Finally, the proposed algorithms are implemented on the electric furnace temperature control system. The effectiveness of the proposed algorithm is shown from experiments.

  • PDF

Adaptive Output-feedback Neural Control of uncertain pure-feedback nonlinear systems (불확실한 pure-feedback 비선형 계통에 대한 출력 궤환 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • Based on the state-feedback adaptive neuro-control algorithm for a SISO nonaffine pure-feedback nonlinear system proposed in [15], an output-feedback controller is proposed in this paper. The output-feedback adaptive neural-net controller for the considered nonlinear system has not been previously proposed in any other literatures yet. The proposed output-feedback controller inherits all the advantages of [15] such that it does not adopt backstepping and this results in relatively simple control and adapting laws. Only one neural network is required for the proposed adaptive controller. The proposed neural-net control scheme expands the applicable class of nonlinear systems.

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.