• Title/Summary/Keyword: Adaptive Neural Controller

검색결과 391건 처리시간 0.031초

이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계 (Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots)

  • 김용백;박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.503-509
    • /
    • 2014
  • 본 논문에서는 이동 로봇의 군집 제어를 위해 실시간 적응 신경 회로망 보상기를 갖는 PID 제어기를 제안한다. 전체 제어 시스템은 선도-추종 로봇 접근법에 의한 기구학 제어기와 이동 로봇의 동역학을 고려한 동적 제어기로 구성되어 있다. 동적 제어기는 PID 제어기에 동특성 변화를 보상하고 성능을 개선시키기 위해 실시간 학습 기능을 가진 신경 회로망 보상기로 구성하였다. 모의실험을 통해 원형 궤적과 직선 궤적에 대해 PID 제어기와 신경 회로망 보상기의 성능을 비교하였다. 이를 통해 실시간 학습 기능을 가진 신경 회로망 보상기가 PID 제어기의 성능을 향상시킴으로써 군집 제어에서 추종 로봇의 추종 성능을 향상시키는 것을 확인하였다.

IPMSM 드라이브의 최대토크를 위한 적응 FNN 제어기 (Adaptive FNN Controller for Maximum Torque of IPMSM Drive)

  • 김도연;고재섭;최정식;정병진;박기태;최정훈;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.313-318
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive fuzzy neural network controller and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using Adaptive-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper reposes speed control of IPMSM using Adaptive-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is a lied to IPMSM drive system controlled Adaptive-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the Adaptive-FNN and ANN controller.

  • PDF

퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어 (Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems)

  • 황영호;이은욱;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

신경 회로망을 이용한 적응 제어 시스템의 설계 (Design of an Adaptive Control System using Neural Network)

  • 장태인;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network)

  • 손종훈;황기현;김형수;박준호;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기 (Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor)

  • 정동화;최정식;고재섭
    • 조명전기설비학회논문지
    • /
    • 제20권3호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 논문은 유도전동기 드라이브의 고성능 제어를 위한 적응 퍼지-뉴로 제어기를 제시한다. 이 알고리즘의 설계는 퍼지제어와 신경회로망을 사용하는 퍼지-신경회로망 제어기에 기초한다. 적응 퍼지-뉴로 제어기는 신경회로망의 학습패턴과 같은 퍼지 룰을 사용하고 또한 지령값과 실제값 사이의 오차를 최소화하기 위하여 신경회로망의 뉴런사이의 하중을 역전파 알고리즘 방법을 사용하여 조절한다. 적응 기준 모델 설계는 기준모델의 출력과 전동기 속도 사이의 오차와 오차 변화분을 기초로 한 퍼지 로직에 의하여 실행되는 적응 메카니즘을 제시한다. 적응 퍼지-뉴로 제어기의 제어 성능은 다양한 동작 상태에 대한 분석으로 평가한다. 제안한 제어시스템의 실험 결과는 고성능과 파리미터 변동과 정상상태 정확성, 순시응답의 강인성을 가진다.

온라인 적응 신경회로망을 이용한 지능형 제어기 설계방법 (A Design Method For An On-line Adaptive Neural Networks Based Intelligent Controller)

  • 김일중;구세완;최주엽;최익;김광배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1341-1343
    • /
    • 1996
  • This paper presents a design method for an on-line adaptive neural networks based intelligent controller. The proposed neural controller, assuming PID controller is initially presented, learns the equivalent behaviors of the existing PID controller initially and switches to take over the PID control system. Then, it executes on-line adaptation via evaluating its performance and minimizing user defined cost function constantly so that the optimal control can be achieved. The PID controller and the proposed neural controller are investigated and compared in computer simulation.

  • PDF

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.

An On-Line Adaptive Control of Underwater Vehicles Using Neural Network

  • Kim, Myung-Hyun;Kang, Sung-Won;Lee, Jae-Myung
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.33-38
    • /
    • 2004
  • All adaptive neural network controller has been developed for a model of an underwater vehicle. This controller combines a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits the advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov theory. The number of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is demonstrated through computer simulation.

고차신경망을 이용한 유도전동기 강인 적응 속도 제어 (Robust Adaptive Speed Controller for Induction Motors Using High Order Neural Network)

  • 박기광;황영호;이은욱;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1507-1508
    • /
    • 2008
  • In this paper, we propose a direct robust adaptive backstepping speed controller for induction motors system. A robust adaptive backstepping controller is designed using high order neural networks(HONN), which avoids the singularity problem in adaptive nonlinear control. The stability of the resulting adaptive system with proposed adaptive controller is guaranteed by suitable choosing the design parameter and initial conditions. HONN are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities. The applicability of the proposed scheme is tested simulation.

  • PDF