• 제목/요약/키워드: Adaptive Network -based Fuzzy Inference System

검색결과 75건 처리시간 0.023초

Voltage Sag and Swell Estimation Using ANFIS for Power System Applications

  • Malmurugan, N.;Gopal, Devarajan;Lho, Young Hwan
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.272-277
    • /
    • 2013
  • Power quality is a term that is now extensively used in power systems applications, and in this context the voltage, current, and phase angle are discussed widely. In particular, different algorithms that are capable of detecting the voltage sag and swell information in a real time environment have been proposed and developed. Voltage sag and swell play an important role in determining the stability, quality, and operation of a power system. This paper presents ANFIS (Adaptive Network based Fuzzy Inference System) models with different membership functions to build the voltage shape with the knowledge of known system parameters, and detect voltage sag and swell accurately. The performance of each method has been compared with each other/other methods to determine the effectiveness of the different models, and the results are presented.

Intrusion Detection System Modeling Based on Learning from Network Traffic Data

  • Midzic, Admir;Avdagic, Zikrija;Omanovic, Samir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5568-5587
    • /
    • 2018
  • This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.

적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링 (The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed)

  • 김호준;정건희;이도훈;이은태
    • 대한토목학회논문집
    • /
    • 제31권5B호
    • /
    • pp.405-414
    • /
    • 2011
  • 본 연구에서는 유역에서 관측되는 강우량과 유출량의 시계열 자료를 바탕으로 최근 시계열 예측 및 시스템 제어 분야에서 성공적으로 적용되고 있는 적응형 네트워크 기반 퍼지추론 시스템(ANFIS)을 갑천 유역에 적용하여 시유출량을 모델링하였다. 입력구조, 소속함수 종류와 개수 등을 다양하게 변화시켜 ANFIS 모형을 학습하고, 평균제곱근오차(RMSE), 평균첨두유량오차(PE) 및 평균첨두시간오차(TE)를 이용하여 ANFIS의 유출해석에 대한 적용성을 평가하였다. 현재시간의 시유출량 Q(t)에 대한 ANFIS의 적용성은 우수한 것으로 평가되었으며, ANFIS 모형은 관측유출량을 적절히 모의하였다. 입력구조가 다른 입력모형을 구성하여 최대 8시간까지 ANFIS의 유출예측 적용성을 평가하였다. 예측시간 증가에 따라서 ANFIS의 유출예측 정확도는 감소하여 예측시간 4시간 이상의 시유출량에 대한 ANFIS의 유출예측 적용성은 제한적이었다. ANFIS는 입력과 출력 자료들만 이용하므로 물리기반 모형에 비교하여 모형구축이 비교적 손쉽기 때문에 홍수 유출모델링에 ANFIS을 유용하게 적용할 수 있을 것으로 판단된다.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

냉동기 성능 진단을 위한 적응형 뉴로퍼지(ANFIS) 모델 개발 (Prediction of Vapor-Compressed Chiller Performance Using ANFIS Model)

  • 신영기;장영수;김영일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.89-95
    • /
    • 2001
  • On-site diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for the purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.

  • PDF

Prediction of shear capacity of channel shear connectors using the ANFIS model

  • Toghroli, Ali;Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ibrahim, Zainah
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.623-639
    • /
    • 2014
  • Due to recent advancements in the area of Artificial Intelligence (AI) and computational intelligence, the application of these technologies in the construction industry and structural analysis has been made feasible. With the use of the Adaptive-Network-based Fuzzy Inference System (ANFIS) as a modelling tool, this study aims at predicting the shear strength of channel shear connectors in steel concrete composite beam. A total of 1200 experimental data was collected, with the input data being achieved based on the results of the push-out test and the output data being the corresponding shear strength which were recorded at all loading stages. The results derived from the use of ANFIS and the classical linear regressions (LR) were then compared. The outcome shows that the use of ANFIS produces highly accurate, precise and satisfactory results as opposed to the LR.

불예측적 이차경로에 대한 ANFIS를 이용한 능동소음제어 (Active Noise Control by ANFIS for Unpredictable Secondary Path)

  • 김응주;최원석;김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1964-1966
    • /
    • 2001
  • Active Noise control(ANC) is rapidly becoming the most effective way to reduce noises that can otherwise be very difficult and expensive to control. This research presents ANFIS (Adaptive Network Fuzzy Inference System) controller for adaptively noise cancelling in a duct. ANC system generates secondary control sound pressure with same amplitude and with opposite phase as noise to be eliminated. ANFIS controller is trained to optimize its parameters for adaptively cancelling noise. That is ANFIS train its parameters by gradient descent and LSE method so called hybrid method. This paper present ANFIS in active noise control which provides an improvement convergence speed and limitation of linearity condition. It can model nonlinear functions of arbitrary complexity and ANFIS can construct an input-ouput mapping based on both human knowledge in the form of Takagi and Sugeno's fuzzy if-then rules and stipulated input-output data pairs. This paper also shows that the proposed ANFIS active noise control system successfully cancelled noise.

  • PDF

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.

Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jameel, Mohammed;Garmasiri, Karim
    • Computers and Concrete
    • /
    • 제12권3호
    • /
    • pp.243-259
    • /
    • 2013
  • Recent developments in Artificial Intelligence (AI) and computational intelligence have made it viable in the construction industry and structural analysis. This study usesthe Adaptive Network-based Fuzzy Inference System (ANFIS) as a modelling tool to predict the strain in tie section for High Strength Self Compacting Concrete (HSSCC) deep beams. 3773 experimental data were collected. The input data andits corresponding strains in tie section as output data were recorded at all loading stages. Results from ANFIS are compared with the classical linear regression (LR). The comparison shows that the ANFIS's results are highly accurate, precise and satisfactory.

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.