• Title/Summary/Keyword: Adaptive Learning System

Search Result 505, Processing Time 0.029 seconds

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • Fourth Industrial Review
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

CMAC Controller with Adaptive Critic Learning for Cart-Pole System (운반차-막대 시스템을 위한 적응비평학습에 의한 CMAC 제어계)

  • 권성규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.466-477
    • /
    • 2000
  • For developing a CMAC-based adaptive critic learning system to control the cart-pole system, various papers including neural network based learning control schemes as well as an adaptive critic learning algorithm with Adaptive Search Element are reviewed and the adaptive critic learning algorithm for the ASE is integrated into a CMAC controller. Also, quantization problems involved in integrating CMAC into ASE system are studied. By comparing the learning speed of the CMAC system with that of the ASE system and by considering the learning genemlization of the CMAC system with the adaptive critic learning, the applicability of the adaptive critic learning algorithm to CMAC is discussed.

  • PDF

Adaptive Learning System based on the Concept Lattice of Formal Concept Analysis (FCA 개념 망에 기반을 둔 적응형 학습 시스템)

  • Kim, Mi-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.479-493
    • /
    • 2010
  • Along with the transformation of the knowledge-based environment, e-learning has become a main teaching and learning method, prompting various research efforts to be conducted in this field. One major research area in e-learning involves adaptive learning systems that provide personalized learning content according to each learner's characteristics by taking into consideration a variety of learning circumstances. Active research on ontology-based adaptive learning systems has recently been conducted to provide more efficient and adaptive learning content. In this paper, we design and propose an adaptive learning system based on the concept lattice of Formal Concept Analysis (FCA) with the same objectives as those of ontology approaches. However, we are in pursuit of a system that is suitable for learning of specific domains and one that allows users to more freely and easily build their own adaptive learning systems. The proposed system automatically classifies the learning objects and concepts of an evolved domain in the structure of a concept lattice based on the relationships between the objects and concepts. In addition, the system adaptively constructs and presents the learning structure of the concept lattice according to each student's level of knowledge, learning style, learning preference and the learning state of each concept.

Application of Ontology technology for Adaptive Learning in e-Learning (적응형 학습을 위한 온톨로지 기술의 적용 방안)

  • Choi, Sook-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.6
    • /
    • pp.53-67
    • /
    • 2009
  • In this study we surveyed the characteristics of the Semantic Web and ontology technology, analyzing the studies which applied ontology to e-Learning. In addition, we investigated the models which should be considered in the adaptive learning, analyzing the existing adaptive learning systems. On the basis of the analysis of them, we sought the ways to apply ontology for supporting the adaptive learning in the e-learning system, designing an ontology-based adaptive learning system. The system made up for the weak points of the existing ontology-based learning systems. That is, it appropriately diagnoses learners' knowledge level of learning concepts, classifying the learning styles in detail, and providing their corresponding learning methods and content. By adapting the learning content to the learners' individual learning style and knowledge level, this system would support their learning more efficiently and more effectively.

  • PDF

Adaptive Recommendation System for Tourism by Personality Type Using Deep Learning

  • Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • Adaptive recommendation systems have been developed with big data processing as a system that provides services tailored to users based on user information and usage patterns. Deep learning can be used in these adaptive recommendation systems to handle big data, providing more efficient user-friendly recommendation services. In this paper, we propose a system that uses deep learning to categorize and recommend tourism types to suit the user's personality. The system was divided into three layers according to its core role to increase efficiency and facilitate maintenance. Each layer consists of the Service Provisioning Layer that real users encounter, the Recommendation Service Layer, which provides recommended services based on user information entered, and the Adaptive Definition Layer, which learns the types of tourism suitable for personality types. The proposed system is highly scalable because it provides services using deep learning, and the adaptive recommendation system connects the user's personality type and tourism type to deliver the data to the user in a flexible manner.

The Study on Goal Driven Personalized e-Learning System Design Based on Modified SCORM Standard (수정된 SCORM 표준을 적용한 목표지향 개인화 이러닝 시스템 설계 연구)

  • Lee, Mi-Joung;Park, Jong-Sun;Kim, Ki-Seok
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.231-246
    • /
    • 2008
  • This paper suggests an e-learning system model, a goal-driven personalized e-learning system, which increase the effectiveness of learning. An e-learning system following this model makes the learner choose the learning goal. The learner's choice would lead learning. Therefore, the system enables a personalized adaptive learning, which will raise the effectiveness of learning. Moreover, this paper proposes a SCORM standard, which modifies SCORM 2004 that has been insufficient to implement the "goal driven personalized e-learning system." We add a data model representing the goal that motivates learning, and propose a standard for statistics on learning objects usage. We propose each standard for contents model and sequencing information model which are parts of "goal driven personalized e-learning system." We also propose that manifest file should be added for the standard for contents model, and the file which represents the information of hierarchical structure and general learning paths should be added for the standard for sequencing information model. As a result, the system could sequence and search learning objects. We proposed an e-learning system and modified SCORM standards by considering the many factors of adaptive learning. We expect that the system enables us to optimally design personalized e-learning system.

A study for developing a system of computer adaptive diagnosis and instruction(CADI) for tailored learning under e-learning environment. (맞춤 e-learning을 위한 컴퓨터 적응 진단 및 수업 체제 개발 연구)

  • 이중권;김성훈
    • The Mathematical Education
    • /
    • v.43 no.3
    • /
    • pp.291-307
    • /
    • 2004
  • This study focused on the developing a system of computer adaptive diagnosis and instruction(CADI). This system is a conceptual model that connected learning with assesment by using new media such as computers, multimedia, and new technologies. In this conceptual model, adaptive diagnosis means tailored or customized diagnostic evaluation, and adaptive instruction implies tailored or customized instruction. The connection between learning and assesment suggests that they are closely related to determine following learning contents and learning methods. CADI's expected effect are 1) it can contribute to real learning of core concept, 2) it can enlarge the educational opportunities, 3) it can help students study by student himself and learn media literacy, 4) information for evaluation functions more essential roles, 5) it is possible to work cooperatively with any other school subject.

  • PDF

Design and Implementation of an Adaptive learning Management System for Personalized Learning (학습자 특성을 고려한 적응적 학습 관리 시스템의 설계 및 구현)

  • 김명회;이현태;오용선
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper, we design an intelligent loaming management logics which provide personalized teaming considering adaptive learning content dement and content sequencing. We enhance the existing functional model including adaptive learning management functions. Also, we present a system architecture to implement the adaptive learning management system. We realize the adaptive teaming management system based on the SCORM run-time engine.

  • PDF

Design and Implementation of an Adaptive Hypermedia Learning System based on Leamer Behavioral Model (학습자 행동모델기반의 적응적 하이퍼미디어 학습 시스템 설계 및 구현)

  • Kim, Young-Kyun;Kim, Young-Ji;Mun, Hyeon-Jeong;Woo, Yang-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.757-766
    • /
    • 2009
  • This study presents an adaptive hypermedia learning system which can provide individual learning environment using a learner behavioral model. This system proposes a LBML which can manage learners' learning behavioral information by tracking down such information real-time. The system consists of a collecting system of learning behavioral information and an adaptive learning support system. The collecting system of learning behavioral information uses Web 2.0 technologies and collects learners' learning behavioral information real-time based on a SCORM CMI data model. The collected information is stored as LBML instances of individual learners based on a LBML schema. With the adaptive learning support system, a rule-based learning supporting module and an interactive learning supporting module are developed by analysing LBML instances.

  • PDF

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.