International journal of advanced smart convergence
/
제12권4호
/
pp.147-153
/
2023
In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.
퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는 ANFIS (Adaptive Network-based Fuzzy Inference System) 모형에서 생성된 퍼지규칙의 해석용이성을 평가하였다. ANFIS모형은 인간 전문가와 상호작용하면서 규칙을 정제해 나갈 수 있다. 특히 인간전문가의 사전지식을 이용하여 초기 퍼지규칙을 만들고 난 후 모형을 학습하면 최적에 수렴하는 시간을 단축할 뿐 아니라, 전역 최적치 도달가능성이 높아진다고 보고되고 있다. 이러한 관점에서 볼 때 규칙의 해석용이성은 인간 전문가와의 상호작용을 위해 매우 중요한 이슈가 될 수 있다. 본 연구에서는 ANFIS모형과 의사결정나무 모형에서 생성된 규칙을 해석용이성 관점에서 비교하기 위한 측도를 제안하고 각 규칙들을 비교하였다. 본 연구에서 제안된 해석용이성 측도들은 규칙을 생성하는 다양한 기계학습 모형의 규칙생성 능력을 평가하는 기준으로도 활용될 수 있을 것이다.
Various inventory control theories have tried to modelling and analyzing supply chains by using quantitative methods and characterization of optimal control policies. However, despite of various efforts in this research filed, the existing models cannot afford to be applied to the realistic problems. The most unrealistic assumption for these models is customer demand. Most of previous researches assume that the customer demand is stationary with a known distribution, whereas, in reality, the customer demand is not known a priori and changes over time. In this paper, we propose a reinforcement learning based adaptive echelon base-stock inventory control policy for a multi-stage, serial supply chain with non-stationary customer demand under the service level constraint. Using various simulation experiments, we prove that the proposed inventory control policy can meet the target service level quite well under various experimental environments.
In this research, new conceptual model is being established to advocate a hypothesis during the hands-on to guarantee an effectiveness of the training with a scientific procedures and techniques under the management of KCTC training system. From this, current requirements of facilitator's qualifications and technical standards can be correspond with educate and their individual characteristics. Establishing education model basis will increase facilitator's training and conservatism in the representative KCTC training operative as the actual fight; contribute to effective training procedures. Like this model, it can be flexibly applied to the units in armies' actual training in circumstantial situations other than KCTC training; also can be applicable in many quarters.
It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.
대표적인 추천 시스템 방법론인 협업 필터링(Collaborative Filtering)에는 이웃기반 방법(Neighbor Methods)과 잠재 요인 모델(Latent Factor model)이라는 두 가지 접근법이 있다. 이중 행렬 분해(Matrix Factorization)를 이용하는 잠재 요인 모델은 사용자-아이템 상호작용 행렬을 두 개의 보다 낮은 차원의 직사각형 행렬로 분해하고 이들의 행렬 곱으로 아이템의 평점(Rating)을 예측한다. 평점 패턴으로부터 추출된 요인 벡터들을 통해 사용자와 아이템 속성을 포착할 수 있기 때문에 확장성, 정확도, 유연성 측면에서 이웃기반 방법보다 우수하다고 알려져 있다. 하지만 평점이 지정되지 않은 아이템에 대해서는 선호도가 다른 개개인의 다양성을 반영하지 못하는 근본적인 한계가 있고 이는 반복적이고 부정확한 추천을 초래하게 된다. 이러한 잠재요인 모델의 한계를 개선하고자 각각의 아이템 별로 사용자의 선호도를 적응적으로 학습하는 적응 심층 잠재요인 모형(Adaptive Deep Latent Factor Model; ADLFM)이 등장하였다. ADLFM은 아이템의 특징을 설명하는 텍스트인 아이템 설명(Item Description)을 입력으로 받아 사용자와 아이템의 잠재 벡터를 구하고 어텐션 스코어(Attention Score)를 활용하여 개인의 다양성을 반영할 수 있는 방법을 제시한다. 하지만 아이템 설명을 포함하는 데이터 셋을 요구하기 때문에 이 방법을 적용할 수 있는 대상이 많지 않은 즉 일반화에 있어 한계가 있다. 본 연구에서는 아이템 설명 대신 추천시스템에서 보편적으로 사용하는 아이템 ID를 입력으로 하고 Self-Attention, Multi-head attention, Multi-Conv1d 등 보다 개선된 딥러닝 모델 구조를 적용함으로써 ADLFM의 한계를 개선할 수 있는 일반화된 적응 심층 잠재요인 추천모형 G-ADLFRM을 제안한다. 다양한 도메인의 데이터셋을 가지고 입력과 모델 구조 변경에 대한 실험을 진행한 결과, 입력만 변경했을 경우 동반되는 정보손실로 인해 ADLFM 대비 MAE(Mean Absolute Error)가 소폭 높아지며 추천성능이 하락했지만, 처리할 정보량이 적어지면서 epoch 당 평균 학습속도는 대폭 향상되었다. 입력 뿐만 아니라 모델 구조까지 바꿨을 경우에는 가장 성능이 우수한 Multi-Conv1d 구조가 ADLFM과 유사한 성능을 나타내며 입력변경으로 인한 정보손실을 충분히 상쇄시킬 수 있음을 보여주었다. 결론적으로 본 논문에서 제시한 모형은 기존 ADLFM의 성능은 최대한 유지하면서 빠른 학습과 추론이 가능하고(경량화) 다양한 도메인에 적용할 수 있는(일반화) 새로운 모형임을 알 수 있다.
앞으로의 시대는 인공지능을 이용한 다양한 분야에 다양한 제품이2 생성될 것이다. 이러한 시대에 인공지능의 학습 방법의 동작 원리를 알고 이를 정확하게 활용하는 것은 상당히 중요한 문제이다. 이 논문은 지금까지 알려진 인공지능 학습 방법을 소개한다. 인공지능의 학습은 수학의 고정점 반복 방법(fixed point iteration method)을 기반으로 하고 있다. 이 방법을 기반으로 수렴 속도를 조절한 GD(Gradient Descent) 방법, 그리고 쌓여가는 양을 누적하는 Momentum 방법, 마지막으로 이러한 방법을 적절히 혼합한 Adam(Adaptive Moment Estimation) 방법 등이 있다. 이 논문에서는 각 방법의 장단점을 설명한다. 특히, Adam 방법은 조정 능력을 포함하고 있어 기계학습의 강도를 조정할 수 있다. 그리고 이러한 방법들이 디지털 신호에 어떠한 영향을 미치는 지에 대하여 분석한다. 이러한 디지털 신호의 학습과정에서의 변화는 앞으로 인공지능을 이용한 작업 및 연구를 수행함에 있어 정확한 활용과 정확한 판단의 기준이 될 것이다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.327-334
/
2024
Bridge inspection is crucial for infrastructure maintenance. Current inspections based on computer vision primarily focus on identifying simple defects such as cracks or corrosion. These detection results can serve merely as preliminary references for bridge inspection reports. To generate detailed reports, on-site engineers must still present the structural conditions through lengthy textual descriptions. This process is time-consuming, costly, and prone to human error. To bridge this gap, we propose a deep learning-based framework to generate detailed and accurate textual descriptions, laying the foundation for automating bridge inspection reports. This framework is built around an encoder-decoder architecture, utilizing Convolutional Neural Networks (CNN) for encoding image features and Gated Recurrent Units (GRU) as the decoder, combined with a dynamically adaptive attention mechanism. The experimental results demonstrate this approach's effectiveness, proving that the introduction of the attention mechanism contributes to improved generation results. Moreover, it is worth noting that, through comparative experiments on image restoration, we found that the model requires further improvement in terms of explainability. In summary, this study demonstrates the potential and practical application of image captioning techniques for bridge defect detection, and future research can further explore the integration of domain knowledge with artificial intelligence (AI).
의료 진단 문제는 기정의된 특성치들로 표현되는 환자의 상태 데이터로부터 병의 유무를 판단하는 일종의 분류 문제로 간주할 수 있다. 본 연구는 혼용 유전자 알고리즘 기반의 분류방법을 도입함으로써 의료 진단 문제와 같은 다차원의 패턴 분류 문제를 해결할 수 있는 방안을 제안하고 있다. 일반적으로 분류 문제는 데이터 패턴에 존재하는 여러 클래스 간 구분경계를 생성하는 접근방법을 사용하는데, 이를 위해 본 연구에서는 일단의 영역 에이전트들을 도입하여 이들을 유전자 알고리즘 및 국소 적응조작을 혼용함으로써 데이터 패턴에 적응하도록 유도하고 있다. 일반적인 유전자 알고리즘의 진화단계를 거친 에이전트들에 적용되는 국소 적응조작은 영역 에이전트의 확장, 회피 및 재배치로 이루어지며, 각 에이전트의 적합도에 따라 이들 중 하나가 선택되어 해당 에이전트에 적용된다. 제안된 의료 진단용 분류 방법은 UCI 데이터베이스에 있는 잘 알려진 의료 데이터, 즉 간, 당뇨, 유방암 관련 진단 문제에 적용하여 검증하였다. 그 결과, 기존의 대표적인 분류기법인 최단거리이웃방법(the nearest neighbor), C4.5 알고리즘에 의한 의사 결정트리(decision tree) 및 신경망보다 우수한 진단 수행도를 나타내었다.
연구목적: 본 연구는 기후변화에 따른 재난의 특성을 분석하여 기후위험에 대비하기 위한 관리체계를 제시함을 목적으로 한다. 연구방법: 최근 국내외 자연재난으로 인한 피해의 추이를 분석하고 기후변화에 따른 재난의 특성을 파악함으로써 기후위험을 위한 관리체계를 설계한다. 연구결과: 기후변화에 따른 위험의 불확실성과 다양한 규모의 재난을 고려할 때, 위험의 평가에서부터 목표 설정, 계획 수립, 모니터링 및 평가, 학습과 조정 등의 핵심과정을 포함하는 포괄적 기후위험 관리체계가 요구되며, 이는 이해관계자 참여를 바탕으로 지속적으로 반복되는 체계를 의미한다. 결론: 본 연구에서 제시한 포괄적 기후위험 관리체계를 효과적으로 추진하기 위해 시범사업을 통해 관리체계를 수정 및 보완하고, 필요한 제도적 여건을 마련해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.