• 제목/요약/키워드: Adaptive Learning Algorithm

검색결과 394건 처리시간 0.02초

디지털 제어기용 적응 신경망 필터의 설계 및 성능평가 (Design and Performance Evaluation of a Neural Network based Adaptive Filter for Application of Digital Controller)

  • 김진선;신우철;홍준희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.345-351
    • /
    • 2004
  • This Paper describes a nonlinear adaptive noise filter using neural network for digital controller system. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental reaults show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary input is divided by unit and each divided part is processed for very short time than all the processed data are unified to whole data.

  • PDF

실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어 (The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

은닉층 노드의 생성추가를 이용한 적응 역전파 신경회로망의 학습능률 향상에 관한 연구 (On the enhancement of the learning efficiency of the adaptive back propagation neural network using the generating and adding the hidden layer node)

  • 김은원;홍봉화
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.66-75
    • /
    • 2002
  • 본 논문에서는 역전파 신경회로망의 학습능률을 향상시키기 위한 방법으로 발생한 오차에 따라서 학습파라미터와 은닉층의 수를 적응적으로 변경시킬 수 있는 적응 역 전파 학습알고리즘을 제안하였다. 제안한 알고리즘은 역전파 신경회로망이 국소점으로 수렴하는 문제를 해결할 수 있고 최적의 수렴환경을 만들 수 있다. 제안된 알고리즘을 평가하기 위하여 배타적 논리합, 3-패리티 및 7${\times}$5 영문자 폰트의 학습을 이용하였다. 실험결과, 기존에 제안된 알고리즘들에 비하여 국소점에 빠지게 되는 경우가 감소하였고 약 17.6%~64.7%정도 학습능률이 향상하였다.

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF

적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링 (on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks)

  • 오성권;박병준;박춘성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

적응 역 전파 신경회로망의 초기 연철강도 설정에 관한 연구 (On the Configuration of initial weight value for the Adaptive back propagation neural network)

  • 홍봉화
    • 정보학연구
    • /
    • 제4권1호
    • /
    • pp.71-79
    • /
    • 2001
  • 본 논문에서는 역 전파 신경회로망의 학습파라미터를 발생한 오차에 따라서 유동성 있게 갱신할 수 있고 이 학습알고리즘의 효율을 향상시킬 수 있는 초기연결강도 설정 방법을 제안하였다. 제안한 알고리즘은 국소 점을 벗어날 수 있는 것으로 기대되고, 수렴환경에 알맞은 초기 연결강도 발생을 설정할 수 있다. 모의실험에서는 세 가지의 학습패턴을 가지고 실험하였다. 첫 번째 3-패리티 문제에 대한 학습을 수행하였고, 두 번째는 $7{\times}5$ 알파벳 영문자 폰트에 대한 학습이고 세 번째는 필기체 숫자 및 한글의 기본 획에 적용하였다. 모의실험결과, 제안된 방법은 기존의 표준 역 전파 알고리즘에 비하여 약 27%~57.2%정도 학습효율이 향상됨을 고찰하였다

  • PDF

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF

DNP을 이용한 로봇 매니퓰레이터의 출력 궤환 적응제어기 설계 (Design of an Adaptive Output Feedback Controller for Robot Manipulators Using DNP)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 추계학술발표논문집
    • /
    • pp.191-196
    • /
    • 2008
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

코렌트로피 이퀄라이져를 위한 새로운 커널 사이즈 적응 추정 방법 (A New Adaptive Kernel Estimation Method for Correntropy Equalizers)

  • 김남용
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.627-632
    • /
    • 2021
  • 적응 신호 처리 및 머신 러닝 등에 활용되고 있는 정보 이론적 학습법(ITL, information theoretic learning)은 커널 사이즈(��) 설정이 성능에 큰 영향을 미친다. ITL 기반의 학습법의 하나인 코렌트로피 알고리듬은 충격성 잡음에 강인성과 채널 왜곡 보상 특성을 함께 지니고 있으나 커널 사이즈 선택에 매우 민감하거나 불안정한 특성도 지니고 있다. 이에, 이 논문에서는 기울기 분모에 나타나는 커널 사이즈의 세제곱이 미치는 민감성을 고려하고, 커널 사이즈의 미세 변동에 대한 오차 전력 변화율을 이용하여 커널 사이즈를 적응적으로 갱신하는 방법을 제안하여 코렌트로피 알고리듬에 적용하였다. 제안된 적응 커널 사이즈 추정 방법을 다중 경로 채널과 충격성 잡음 환경에 대해 실험하였다. 제안한 방식은 고정 커널사이즈의 기존 알고리듬에 비해 2배 빠른 수렴 속도를 나타냈고 초기 커널 사이즈 2.0 에서 6.0 에 대해 모두 적절히 수렴하는 능력을 보였다. 이에 초기 커널 사이즈 선택에 큰 여유도를 가지고 성능을 향상시킬 수 있음을 입증하였다.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.