• 제목/요약/키워드: Adaptive Learning Algorithm

검색결과 394건 처리시간 0.024초

비안정적인 Rework 확률이 존재하는 제조공정을 위한 적응형 스케줄링 알고리즘 (An Adaptive Scheduling Algorithm for Manufacturing Process with Non-stationary Rework Probabilities)

  • 신현준;유재필
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4174-4181
    • /
    • 2010
  • 본 논문은 비안정적인 재작업 발생확률이 존재하는 제조공정을 위한 적응형 스케줄링 알고리즘을 제시한다. 본 논문에서 제안하는 하이브리드 Q-학습 알고리즘은 강화학습 기반의 Q-학습과 인공신경망을 결합한 알고리즘으로써 재작업확률이 불안정한 상황의 제조공정에 대해 학습을 통해 적응력을 가질 수 있도록 고안되었다. 제안 알고리즘은 평균지연시간을 척도로 그 성능을 평가하였고, 기존의 작업할당 알고리즘들과 다양한 실험 시나리오를 기반으로 비교함으로써 그 우수성을 보이도록 한다.

스마트 학습 환경에서 웹 콘텐츠 적응을 위한 부분화에 관한 연구 (A Study on the Segmentation for Adaptation of Web Contents in Smart Learning Environment)

  • 서진호;김명희;박만곤
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.325-333
    • /
    • 2016
  • The development of smart technology has brought the conversion of closed traditional e-learning contents into open flexible smart learning contents consisting of learner-centered modules, without the constraints of time and space by use of smart devices from the uniformed and passive classroom between teachers and learners. It has been demanded an open, personalized and customized teaching and learning contents of smart education and training systems according to wide supply of various smart devices. In this paper, we discuss about the status of the smart teaching and learning systems and analyze the characteristics and structure of the web contents for smart education and training systems by use of smart devices. And we propose a method how to block web contents, to extract them, and adapt personalized segments of web contents by adaptive algorithm into smart learning devices. We extract blocks from the web contents based on the smart device information and the preference information of the learners from existing web contents without the hassle of learners environment. After specifying a block priority from the extracted web contents by the adaptive segment algorithm, it can be displayed directly to the screen to fit the individual learning progress of the learners.

적응 역전파 신경회로망의 은닉 층 노드 수 설정에 관한 연구 (On the set up to the Number of Hidden Node of Adaptive Back Propagation Neural Network)

  • 홍봉화
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.55-67
    • /
    • 2002
  • 본 논문에서는 학습계수를 발생한 오차에 따라서 적응적으로 갱신할 수 있는 학습알고리즘에 은닉 노드의 수를 다양하게 변화시킬 수 있는 적응 역 전파(Back Propagation) 알고리즘을 제안하였다. 제안한 알고리즘은 국소점을 벗어날 수 있는 것으로 기대되고, 수렴환경에 알맞은 은닉 노드의 수를 설정할 수 있다. 모의실험에서는 두 가지의 학습패턴을 가지고 실험하였다. 하나는 X-OR 문제에 대한 학습과 또 다른 하나는 $7{\times}5$ 도트 영문자 폰트에 에 대한 학습이다. 두 모의실험에서 국소 점으로 안주할 확률은 감소하였다. 또한, 영문자 폰트 학습에서의 신경회로망은 기존의 역 전파 알고리즘과 HNAD 알고리즘에 비하여 약 41.56%~58.28%정도 학습효율이 향상됨을 고찰하였다.

  • PDF

컴퓨터기반 시험 시스템 설계 및 구축 (A Design and Implementation of Computer-based Test System)

  • 조성호
    • 한국콘텐츠학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2005
  • e-러닝은 교육과 학습을 위하여 e-비즈니스 기술 및 서비스를 사용하는 응용프로그램이다. 이는 원격지자원과 서비스에 접근을 수월하게 함으로서 교육의 질을 높이기 위한 새로운 멀티미디어 및 인터넷 기술을 사용한다. 본 논문은 신중하게 설계되고 구현된 인터넷기반의 컴퓨터기반 시험 시스템에 대하여 기술한다. 본 시스템은 콘텐츠 전달 기술, 컴퓨터 적응형 시험 알고리즘, 리뷰엔진으로 구성되어 있다. 본 논문에서는 컴퓨터기반 시험 시스템을 설계하고 구현할 때에 고려되어야 할 요소들에 대하여 서술한다. 또한, 실제 데이터를 이용하여 컴퓨터 적응형 알고리즘을 위한 편향 값을 어떻게 조절하는지를 보인다.

  • PDF

Research of Adaptive Transformation Method Based on Webpage Semantic Features for Small-Screen Terminals

  • Li, Hao;Liu, Qingtang;Hu, Min;Zhu, Xiaoliang
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.900-910
    • /
    • 2013
  • Small-screen mobile terminals have difficulty accessing existing Web resources designed for large-screen devices. This paper presents an adaptive transformation method based on webpage semantic features to solve this problem. According to the text density and link density features of the webpages, the webpages are divided into two types: index and content. Our method uses an index-based webpage transformation algorithm and a content-based webpage transformation algorithm. Experiment results demonstrate that our adaptive transformation method is not dependent on specific software and webpage templates, and it is capable of enhancing Web content adaptation on small-screen terminals.

실시간 적응 학습 제어를 위한 진화연산(II) (Evolutionary Computation for the Real-Time Adaptive Learning Control(II))

  • 장성욱;이진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.730-734
    • /
    • 2001
  • In this study in order to confirm the algorithms that are suggested from paper (I) as the experimental result, as the applied results of the hydraulic servo system are very strong a non-linearity of the fluid in the computer simulation, the real-time adaptive learning control algorithms is validated. The evolutionary strategy has characteristics that are automatically. adjusted in search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accord with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time as the description of the paper (I). The possibility of a new approaching algorithm that is suggested from the computer simulation of the paper (I) would be proved as the verification of a real-time test and the consideration its influence from the actual experiment.

  • PDF

유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계 (Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator)

  • 이기성;조현철
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.106-116
    • /
    • 1998
  • 유연 로봇 매니퓰레이터의 위치 제어 알고리즘에 대한 연구를 하였다. 제안하는 알고리즘은 신경회로망의 학습 알고리즘에 근거한 자동 구축 퍼지 적응 제어기(ACFAC : Automaitc Constructed Fuzzy Adaptive controller)에 기본으로 한다. 제안하는 시스템은 비지도 경쟁 학습 알고리즘을 사용하여 입력 변수의 멤버십 함수와 지도 Outstar 학습 알고리즘을 사용하여 출력 정보를 학습시킨다. ACFAC는 유연 로봇 매니퓰레이터의 동력한 모델을 필요로 하지 않는다. ACFAC는 유연 로봇 매니퓰레이터의 끝점이 원하는 궤적을 따라가도록 설계되었다. 이 제어기의 입력은 위치 오차, 위치 오차의 미분 값과 오차의 variation에 의해 결정된다. ACFAC의 우수서을 보여주기 우해서 PID 제어나 신경회로망 알고리즘을 사용한 결과와 비교를 하였다.

  • PDF

실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어 (Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm)

  • 장성욱;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계 (Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor)

  • 한성현
    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF