• Title/Summary/Keyword: Adaptive Kalman filter

Search Result 196, Processing Time 0.022 seconds

Development of an Intelligent and Hybrid Scheme for Rapid INS Alignment

  • Huang, Yun-Wen;Chiang, Kai-Wei
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.115-120
    • /
    • 2006
  • This article propose a new idea of developing a hybrid scheme to achieve faster INS alignment with higher accuracy using a novel procedure to estimate the initial attitude angles that combines a Kalman filter and Adaptive Neuro-Fuzzy Inference System architecture. A tactical grade inertial measurement unit was applied to verify the performance of proposed scheme in this study. The preliminary results indicated the outstanding improvements in both time consumption for fine alignment process and accuracy of estimated attitude angles, especially in heading angles. In general, the improvement in terms of time consumption and the accuracy of estimated attitude estimated accuracy reached 80% and 70% respectively during alignment process after compensating the attitude angles estimated by an extended Kalman filter with 15 states using proposed approach. It is worth mentioned that the proposed approach can be implemented in general real time navigation applications.

  • PDF

Real-Time Flood Forecasting System For the Keum River Estuary Dam(II) -System Application- (금강하구둑 홍수예경보시스템 개발(II) -시스템의 적용-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

A Study on the Image Enhancement of Port Films using Edge-Adaptive Kalmsn filter (경계-적응 칼만필터를 이용한 Port Films의 영상개선에 관한 연구)

  • 박순옥
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.427-432
    • /
    • 1996
  • The primary purpose of port filming is to verify the treatment volume under treatment. Although the image quality with the megavoltage x-ray beam is poorer than with the diagnostic or the simulator film. This paper proposes an edge-adaptive Kalman filter for the image enhancement of port films. Suggested filtering procedure preserves edge information and eliminates edge noise and inside and outside treatment area preserving treatment boundary.

  • PDF

Prediction of Volumes and Estimation of Real-time Origin-Destination Parameters on Urban Freeways via The Kalman Filtering Approach (칼만필터를 이용한 도시고속도로 교통량예측 및 실시간O-D 추정)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.7-26
    • /
    • 1996
  • The estimation of real-time Origin-Destination(O-D) parameters, which gives travel demand between combinations of origin and destination points on a urban freeway network, from on-line surveillance traffic data is essential in developing an efficient ATMS strategy. On this need a real-time O-D parameter estimation model is formulated as a parameter adaptive filtering model based on the extended Kalman Filter. A Monte Carlo test have shown that the estimation of time-varying O-D parameter is possible using only traffic counts. Tests with field data produced the interesting finding that off-ramp volume predictions generated using a constant freeway O-D matrix was replaced by real-time estimates generated using the parameter adaptive filter.

  • PDF

Leading Vehicle State Estimator for Adaptive Cruise Control and Vehicle Tracking

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.181-184
    • /
    • 1999
  • Leading vehicle states are useful and essential elements in adaptive cruise control (ACC) system, collision warning (CW) and collision avoidance (CA) system, and automated highway system (AHS). There are many approaches in ACC using Kalman filter. Mostly only distance to leading vehicle and velocity difference are estimated and used for the above systems. Applications in road vehicle in curved road need to obtain more informations such as yaw angle, steering angle which can be estimated using vision system. Since vision system is not robust to environment change, we used Kalman filter to estimate distance, velocity, yaw angle, and steering angle. Application to active tracking of target vehicle is shown.

  • PDF

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

  • Hong, WoonSeon;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.565-573
    • /
    • 2017
  • This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing synchronization effects for the measurement of AKNF. With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error improvement compared to the conventional gyro compass alignment.