• Title/Summary/Keyword: Adaptive Fuzzy Controller

Search Result 515, Processing Time 0.028 seconds

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose a new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

A design of neuro-fuzzy adaptive controller using a reference model following function (기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계)

  • Lee, Young-Seog;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

Adaptive Fuzzy Control for High Performance Speed Control of Induction Motor Drive (유도전동기의 고성능 속도제어를 위한 적응퍼지제어)

  • Lee Hong-Gyun;Lee Jung-Chul;Jung Tack-Gi;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.222-224
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(mAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

  • PDF

FUZZY ADAPTIVE CONTROL ENVIRONMENT USING LYAPUNOV FUNCTONS : FACE

  • Matia, F.;Jimenez, A.;Sanz, R.;Galan, R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.765-768
    • /
    • 1993
  • Adaptive Control is used in order to improve close loop dynamics with a fuzzy controller when process parameters are unknown or fluctuate form an initial value. The way in which the adaptive control environment may be applied is the following. First we obtain a linear fuzzy controller. Second, we apply the adaptive rules by means of actuating directly over fuzzy variables which change their value. The techniques are based on Lyapunov functions. Third, we comment about extending this method to non-piecewise linear controllers using the contrast definition for a fuzzy controller.

  • PDF

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

A Design of Fuzzy-Neural Network Algorithm Controller for Path-Tracking in Wheeled Mobile Robot (구륜 이동 로봇의 경로추적을 위한 퍼지-신경망을 이용한 제어기 설계)

  • Kim, Je-Hyeon;Kim, Sang-Won;Lee, Yong-Hyeon;Park, Jong-Guk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.255-258
    • /
    • 2003
  • It is hard to centrol the wheeled mobile robot because of uncertainty of modeling, non-holonomic constraint and so on. To solve the problems, we design the controller of wheeled mobile robot based on fuzzy-neural network algorithm. In this paper, we should research the problem of classical controller for path-tracking algorithm and design of Fuzzy-Neural Network algorithm controller. Classical controller acquired different control value according to change of initial position and direction. In this control value having very difficult and having acquired a lot of trial and error Fuzzy is implemented to adaptive adjust control value by error and change of error and neural network is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-neural network controller is effective.

  • PDF

Design of an Adaptive Fuzzy Controller for Power System Stabilization

  • Park, Young-Hwan;Park, Jang-Hyun;Yoon, Tae-Woong;Park, Gwi-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.432-437
    • /
    • 1998
  • Power systems have uncertain dynamics due to a variety of effects such as lightning, severe storms and equipment failures. The variation of the effective reactance of a transmission line due to a fault is an example of uncertainty in power system dynamics. Hence, a robust controller to cope with these uncertainties is needed. Recently fuzzy controllers have become quite popular for robust control due to its capability of dealing with unstructured uncertainty. Thus in this paper we design an adaptive fuzzy controller using an input-output linearization approach for the transient stabilization and voltage regulation of a power system under a sudden fault. Simulation results show that satisfactory performance is achieved by the proposed controller.

  • PDF