• Title/Summary/Keyword: Adaptive Decomposition Method

Search Result 86, Processing Time 0.031 seconds

Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): I. their background and model description

  • Lee, Tae-Sam;Ouarda, TahaB.M.J.;Kim, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.90-90
    • /
    • 2011
  • Long-term nonstationary oscillations (NSOs) are commonly observed in hydrological and climatological data series such as low-frequency climate oscillation indices and precipitation dataset. In this work, we present a stochastic model that captures NSOs within a given variable. The model employs a data-adaptive decomposition method named empirical mode decomposition (EMD). Irregular oscillatory processes in a given variable can be extracted into a finite number of intrinsic mode functions with the EMD approach. A unique data-adaptive algorithm is proposed in the present paper in order to study the future evolution of the NSO components extracted from EMD.

  • PDF

Audio Watermarking Using Empirical Mode Decomposition (경험적 모드 분해법을 이용한 오디오 워터마킹)

  • Nguyen, Phuong;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.89-92
    • /
    • 2014
  • This paper presents a secure and blind adaptive audio watermarking algorithm based on Empirical Mode Decomposition (EMD). The audio signal is divided into frames and each one is decomposed adaptively, by EMD, into several Intrinsic Mode Functions (IMFs). The watermark and the synchronization codes are then embedded into the extrema of the last IMF. The experimental results show that the proposed method has good imperceptibility and robustness against signal processing attacks.

  • PDF

Decomposable polynomial response surface method and its adaptive order revision around most probable point

  • Zhang, Wentong;Xiao, Yiqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.675-685
    • /
    • 2020
  • As the classical response surface method (RSM), the polynomial RSM is so easy-to-apply that it is widely used in reliability analysis. However, the trade-off of accuracy and efficiency is still a challenge and the "curse of dimension" usually confines RSM to low dimension systems. In this paper, based on the univariate decomposition, the polynomial RSM is executed in a new mode, called as DPRSM. The general form of DPRSM is given and its implementation is designed referring to the classical RSM firstly. Then, in order to balance the accuracy and efficiency of DPRSM, its adaptive order revision around the most probable point (MPP) is proposed by introducing the univariate polynomial order analysis, noted as RDPRSM, which can analyze the exact nonlinearity of the limit state surface in the region around MPP. For testing the proposed techniques, several numerical examples are studied in detail, and the results indicate that DPRSM with low order can obtain similar results to the classical RSM, DPRSM with high order can obtain more precision with a large efficiency loss; RDPRSM can perform a good balance between accuracy and efficiency and preserve the good robustness property meanwhile, especially for those problems with high nonlinearity and complex problems; the proposed methods can also give a good performance in the high-dimensional cases.

Hierarchical Smoothing Technique by Empirical Mode Decomposition (경험적 모드분해법에 기초한 계층적 평활방법)

  • Kim Dong-Hoh;Oh Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.319-330
    • /
    • 2006
  • A signal in real world usually composes of multiple signals having different scales of frequencies. For example sun-spot data is fluctuated over 11 year and 85 year. Economic data is supposed to be compound of seasonal component, cyclic component and long-term trend. Decomposition of the signal is one of the main topics in time series analysis. However when the signal is subject to nonstationarity, traditional time series analysis such as spectral analysis is not suitable. Huang et. at(1998) proposed data-adaptive method called empirical mode decomposition (EMD) . Due to its robustness to nonstationarity, EMD has been applied to various fields. Huang et. at, however, have not considered denoising when data is contaminated by error. In this paper we propose efficient denoising method utilizing cross-validation.

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Many-objective Evolutionary Algorithm with Knee point-based Reference Vector Adaptive Adjustment Strategy

  • Zhu, Zhuanghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2976-2990
    • /
    • 2022
  • The adaptive adjustment of reference or weight vectors in decomposition-based methods has been a hot research topic in the evolutionary community over the past few years. Although various methods have been proposed regarding this issue, most of them aim to diversify solutions in the objective space to cover the true Pareto fronts as much as possible. Different from them, this paper proposes a knee point-based reference vector adaptive adjustment strategy to concurrently balance the convergence and diversity. To be specific, the knee point-based reference vector adaptive adjustment strategy firstly utilizes knee points to construct the adaptive reference vectors. After that, a new fitness function is defined mathematically. Then, this paper further designs a many-objective evolutionary algorithm with knee point-based reference vector adaptive adjustment strategy, where the mating operation and environmental selection are designed accordingly. The proposed method is extensively tested on the WFG test suite with 8, 10 and 12 objectives and MPDMP with state-of-the-art optimizers. Extensive experimental results demonstrate the superiority of the proposed method over state-of-the-art optimizers and the practicability of the proposed method in tackling practical many-objective optimization problems.

THE ADAPTIVE WAVELET FOR HIGH ORDER ACCURATE AND EFFICIENT COMPUTATIONAL FLUID DYNAMICS (고차정확도 및 효율적인 전산유체해석을 위한 Adaptive Wavelet)

  • Lee, Do-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.261-265
    • /
    • 2011
  • An adaptive wavelet transformation method with high order accuracy is proposed to allow efficient and accurate flow computations. While maintaining the original numerical accuracy of a conventional solver, the scheme offers efficient numerical procedure by using only adapted dataset. The main algorithm includes 3rd order wavelet decomposition and thresholding procedure. After the wavelet transformation, 3rd order of spatial and temporal accurate high order interpolation schemes are executed only at the points of the adapted dataset. For the other points, high order of interpolation method is utilized for residual evaluation. This high order interpolation scheme with high order adaptive wavelet transformation was applied to unsteady Euler flow computations. Through these processes, both computational efficiency and numerical accuracy are validated even in case of high order accurate unsteady flow computations.

  • PDF

Local Adaptive Noise Cancellation for MCG Signals Based on Wavelet Transform (웨이브릿 변환을 기반으로 한 심자도 신호의 국소 적응잡음제거)

  • 김용주;박희준;원철호;이용호;김인선;김명남;조진호
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.26-30
    • /
    • 2003
  • Magneto-cardiogram(MCG) signals may be highly distorted by the environmental noise, such as power-line interference, broadband white noise, surrounding magnetic noise, and baseline wondering. Several kinds of digital filters and noise cancellation methods have been designed and realized by many researchers, but these methods gave some problems that the original signal may be distorted by digital filter due to the wideband characteristics of background noise. To eliminate noise effectively without distortion of MCG signals, we performed multi-level frequency decomposition using wavelet packets and local adaptive noise cancellation in each local frequency range. In addition to the proposed wavelet filter to eliminate these various non-stationary noise elements, the local adaptive filter using the least mean square(LMS) algorithm and the soft threshold do-noising method are introduced in this paper. The signal to noise ratio(SNR) and the reconstruction square error(RSE) are calculated to evaluate the performance of the proposed method and compared with the results of the conventional wavelet filter and adaptive filter. The experimental results show that the proposed local adaptive filtering method is better than the conventional methods.

  • PDF

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1998
  • We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

  • PDF