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Abstract 

 
The adaptive adjustment of reference or weight vectors in decomposition-based methods has 
been a hot research topic in the evolutionary community over the past few years. Although 
various methods have been proposed regarding this issue, most of them aim to diversify 
solutions in the objective space to cover the true Pareto fronts as much as possible. Different 
from them, this paper proposes a knee point-based reference vector adaptive adjustment 
strategy to concurrently balance the convergence and diversity. To be specific, the knee point-
based reference vector adaptive adjustment strategy firstly utilizes knee points to construct the 
adaptive reference vectors. After that, a new fitness function is defined mathematically. Then, 
this paper further designs a many-objective evolutionary algorithm with knee point-based 
reference vector adaptive adjustment strategy, where the mating operation and environmental 
selection are designed accordingly. The proposed method is extensively tested on the WFG 
test suite with 8, 10 and 12 objectives and MPDMP with state-of-the-art optimizers. Extensive 
experimental results demonstrate the superiority of the proposed method over state-of-the-art 
optimizers and the practicability of the proposed method in tackling practical many-objective 
optimization problems. 
 
 
Keywords: Evolutionary algorithm, Artificial intelligence, Reference vector, Adaptive 
adjustment, Knee point. 
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1. Introduction 

Many-objective optimization[1,2,3,4]has gained wide attentions over the past few years due 
to its applications in various engineering problems[5,6,7,8]. Mathematically, many-objective 
optimization problems (MaOPs)[9,10,11,12] can be formulated as follows: 
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where 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, . . . , 𝑥𝑥𝐷𝐷) indicates a D-dimensional decision vector, and M>3. Since the 
objectives conflict with each other, only the best trade-off solutions can be obtained. For 
MaOPs, the Pareto dominance is used to describe the relations between solutions. Solution 
𝑋𝑋𝑎𝑎 Pareto dominates 𝑋𝑋𝑏𝑏 if and only if ∀𝑖𝑖 ∈ {1,2, . . . ,𝑀𝑀}:𝑓𝑓𝑖𝑖 ( 𝑋𝑋𝑎𝑎 ) ≤ 𝑓𝑓𝑖𝑖 ( 𝑋𝑋𝑏𝑏 ) and ∃𝑖𝑖 ∈
{1,2, . . . ,𝑀𝑀}:𝑓𝑓𝑖𝑖(𝑋𝑋𝑎𝑎)< 𝑓𝑓𝑖𝑖(𝑋𝑋𝑏𝑏). The best trade-off solutions in the objective space are called 
Pareto fronts. 

Different from tackling multi-objective problems, which are generally with 2 or 3 objectives, 
the Pareto dominance[4,13,14,15,16] is faced with the loss of evolutionary pressure when 
dealing with MaOPs. To effectively deal with MaOPs, researchers have tailored various 
techniques, which can be divided into the following three categories. (1) Dominance relation-
based methods, which enhance the evolutionary pressure by utilizing the dominance relations 
between solutions. Typical methods include MaOEA-ARV[9], NSGA-III[17], MaOEA-
RNM[18] and NSGA-II-SDR[19]. These optimizers generally rely on the Pareto dominance 
and its variants to maintain the evolutionary pressure. Although these optimizers have shown 
promising performance on various MaOPs, they are still faced with the issue of converging to 
local regions. (2) Indicator-based methods. IGD[20], HV[21] and R2[22] are frequently used 
indicators, which choose solutions by measuring the contribution to the employed indicators. 
Among them, HV is a widely used indicator for measuring the contribution of solutions. 
However, HV-based methods have various limitations. For example, HV is computationally 
expensive and prefers to knee-point regions. (3) Decomposition-based methods, of which the 
main idea is to decompose the complex MaOPs into multiple simple problems and tackle them 
collaboratively. To be specific, the diversity is guaranteed by decomposed subproblems, while 
the convergence pressure is enhanced by scalarizing functions. MOEA/D[23], MOEA/DD[24], 
and MOEA/D-DE[25] belong to the category. However, as paper[26] points out, the Pareto 
fronts of MaOPs are various. The predefined weight or reference vectors are unable to 
effectively cover all Pareto fronts. Note that weight vector and reference vector have the 
similar meanings. To alleviate this issue, some effective methods, such as the adaptive weight 
adjustments[27], adaptive scalarizing methods[28] and dynamic adjustment reference 
vectors[29], have been proposed by adaptively adjusting the weight or reference vectors during 
optimization.  

As discussed above, most of the adaptive reference vector strategies are designed to 
diversify solutions to cover the true Pareto fronts as much as possible, but they are unable to 
balance the convergence and diversity simultaneously. Therefore, this paper aims to design a 
knee point-based reference vector adaptive adjustment strategy to cover the true Pareto fronts 
as much as possible and concurrently ensure the convergence. After that, a many-objective 
evolutionary algorithm with knee point-based reference vector adaptive adjustment strategy is 
designed for effectively tackling MaOPs. In summary, the contributions can be described as 
follows: 
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1) To adaptively balance the convergence and diversity, the knee point-based reference 
vector adaptive adjustment strategy is designed elaborately, where knee points are used 
to adaptively define the reference vectors and the fitness values of solutions are also 
defined based on the adjusted reference vectors. 

2) Many-objective evolutionary algorithm with knee point-based reference vector 
adaptive adjustment strategy (MaEA-KRVA) is proposed and tested on multiple 
MaOPs with up to 12 objectives and practical problems in comparison with MOEA/DD, 
KnEA,MOMBI-II and NSGA-III. The experimental comparisons illustrate that the 
proposed knee point-based reference vector adaptive adjustment strategy is outstanding 
in terms of the spread and IGD indicators, demonstrating the superiority of the proposed 
method over other methods. 

   The structure of this paper is organized as follows. Section 2 reviews related work on the 
adjustment of weight or reference vectors. Section 3 introduces the details of the knee point-
based reference vector adaptive adjustment strategy. Section 4 shows the main components of 
MaEA-KRVA. The performance of MaEA-KRVA is tested and analyzed in Section 5. The 
conclusions are drawn in Section 6. 

2. Related work 
The performance of decomposition-based methods heavily relies on the distribution of weight 
or reference vectors. Therefore, the adjustment of weight or reference vectors is greatly critical 
for optimizers. Typical techniques for tackling this issue can be summarized as follows. 

Basically, decomposition-based methods consist of two categories. The first one is to 
decompose MaOPs into a set of single-objective optimization problems, while the second one 
is to decompose MaOPs into sub-MOPs. Typical methods in the first category include some 
weighted aggregation-based optimizers proposed in early days and multi-objective 
evolutionary algorithms based on decomposition [23]. It is worthy to mention that MOEA/D 
is the representative of decomposition-based methods, where the weight vectors are initially 
design to be uniformly distributed. MOEA/D-M2M and NSGA-III are the typical 
representatives of the second category. However, recent studies[17,18] have proved that the 
fixed weight vectors in decomposition-based methods may be unable to distribute solutions 
along the whole Pareto fronts. Therefore, Gu et al[30] proposed to utilize a linear interpolation 
of non-dominated solutions to adjust the weight vectors. Li et al[31] adaptively modified the 
weight vectors using a simulated annealing technique. Jiang et al[32] proposed a Pareto-
adaptive weight vector strategy to dynamically adjust the weight vectors. Qi et al[27] designed 
an adaptive weight vector adjustment strategy, which regulated the weight vectors periodically 
based on the current solution distribution. Wang et al[33] proposed to adaptively construct the 
weight vectors during evolutionary process to uniformly guide solutions to the true Pareto 
fronts. More works on the adaptive adjustment of weight vectors can be found in 
papers[34,35,36,37]. 

As can be seen from the discussions above, a lot of efforts have been devoted to the 
theoretical research of the adaptive adjustment of weight vectors to ensure the diversity of 
solutions. Different from the strategies above, this paper attempts to design a more flexible 
weight vector adaptive adjustment strategy to adaptively balance the convergence and 
diversity, and further proposes a many-objective evolutionary algorithm with knee point-based 
reference vector adaptive adjustment strategy for MaOPs. 
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3. Knee point-based Reference Vector Adaptive Adjustment Strategy 
    Adaptively adjusting the reference vector is of great significance for the diversity of 
solutions. Theoretically, for one solution set, if the reference vector can be adjusted according 
to the distribution of solutions, the overall diversity can be ensured. Further, if the convergence 
of solutions can be also taken into account when defining the reference vector, then the 
convergence and diversity can be guaranteed, simultaneously. Therefore, this paper proposes 
the following knee point-based reference vector adaptive adjustment strategy to realize the 
idea above. 

For one solution set �𝑋𝑋𝟏𝟏,𝑋𝑋𝟐𝟐, . . . ,𝑋𝑋𝑵𝑵�, the reference vector can be mathematically defined 
with (2), 
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where 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 indicates the knee point of solution set �𝑋𝑋𝟏𝟏,𝑋𝑋𝟐𝟐, . . . ,𝑋𝑋𝑵𝑵�, which can be computed 
with the following (3), 
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where XM′ represents the extreme solution on the M-th objectives. 

Z in (2) is formulated with (5), 
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where 𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛and 𝑧𝑧∗denote the nadir point and ideal point, respectively.  
   Based on (2), the fitness value of solution 𝑋𝑋𝑖𝑖 ∈ �𝑋𝑋𝟏𝟏,𝑋𝑋𝟐𝟐, . . . ,𝑋𝑋𝑵𝑵� can be computed with the 
following (6), 
 

                                              ( ) ( )i ref ifit X V F X= ×                                         (6) 

 

From (2), it can be seen that the reference vector can be adaptively adjusted according to 
the distribution of solutions. Hence, the diversity of solutions can be ensured accordingly. In 
terms of convergence, as paper[38] declares, the knee point is beneficial to choose solutions 
with better convergence. (2) is essentially determined by the knee point. The knee point, as 
can be seen from (3), (4) and (5), is actually one solution with the minimal projection distance 
on the vector (1,1,…,1). Due to the involvement of knee points, the convergence of solutions 
can also be guaranteed. According to the analyses above, it can be seen that the proposed 
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adaptive reference vector is able to concurrently balance the convergence and diversity. 

4. Many-objective Evolutionary Algorithm with Knee point-based 
Reference Vector Adaptive Adjustment strategy 

4.1 General framework of MaEA-KRVA 
Algorithm 1 shows the details of MaEA-KRVA. To begin with, a population of N solutions 

is randomly initialized. Then, two solutions are randomly selected from the current population, 
referring to line 1. If the two solutions have evident Pareto dominance relation, the dominating 
solution is included into the mating pool, referring to lines 7~8. Otherwise, compute the fitness 
values of the two solutions and the solution with a smaller value is included into the mating 
pool, referring to lines 9~13. After that, perform the simulated binary crossover and 
polynomial mutation on solutions[39] in the mating pool. The generated solutions are then 
combined with parent population. Perform the fast non-dominated sorting strategy on the 
resultant population, referring to line 16. Divide the k-th 𝐹𝐹𝑘𝑘 Pareto front into N-|𝑃𝑃3|sets using 
the k-means strategy. For solutions in each set, compute their fitness values and include the 
solution with the minimum fitness value into next population, referring to 19~22. Repeat the 
operations above until the stopping criterion is reached. Accordingly, Fig. 1 presents the flow 
chart of MaEA-KRVA. 

 
Algorithm 1: Pseudocode of MaEA-KRVA 
Input: N(population size) 
Output: P 
1: P←Initialization(N) 
2: While termination criterion not satisfied do 
3: 𝑃𝑃1 ← ∅ 
4:  {𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋1), 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋2), . . . } ← 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(P) 
5:   While |𝑃𝑃1| < 𝑁𝑁 do 
6:      randomly choose 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 from P 
7:      If 𝑋𝑋𝑖𝑖 ≺ 𝑋𝑋𝑗𝑗 or 𝑋𝑋𝑖𝑖 ≻ 𝑋𝑋𝑗𝑗   then 
8:          𝑃𝑃1 ←choose the dominating solution from 𝑋𝑋𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑗𝑗 
9:      Else if 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑖𝑖) < 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑗𝑗)then 
10:        𝑃𝑃1 ← 𝑃𝑃1⋃{𝑋𝑋𝑖𝑖} 
11:    Else if 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑖𝑖) ≥ 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑗𝑗) then 
12:       𝑃𝑃1 ← 𝑃𝑃1⋃{𝑋𝑋𝑗𝑗} 
13:    End 
14:  End 
15: 𝑃𝑃2 ← 𝑃𝑃⋃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃1) 
16: {𝐹𝐹1,𝐹𝐹2, . . . ,𝐹𝐹𝑘𝑘} ← 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( 𝑃𝑃2) 
17: 𝑃𝑃3 ← ⋃𝑖𝑖=1

𝑘𝑘−1𝐹𝐹𝑖𝑖 
18: {𝑆𝑆1, 𝑆𝑆2, . . . } ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝑘𝑘 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁 − |𝑃𝑃3| sets using k-means  
19:   For 𝑆𝑆𝑖𝑖 ∈ {𝑆𝑆1, 𝑆𝑆2, . . . }do  
20:      {𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋1), 𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋2), . . . } ← 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑆𝑆𝑖𝑖) 
21:      P←Solution with the minimum fitness value 
22:   End 
23: End 
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Fig. 1. Flow chart of MaEA-KRVA 

4.2 Knee point-based Reference Vector Adaptive Adjustment Strategy 
Algorithm 2 shows the details of the knee point-based reference vector adaptive adjustment 

strategy. As can be seen, the ideal and nadir points are firstly computed, referring to line 2. 
After that, compute the extreme points and construct vector W according to (4), referring to 
line 3. Then, compute the project of each solution on vector W, referring to line 5. According 
to the results above, compute the knee point, referring to lines 7~13. The reference vector can 
be therefore obtained according to (2), referring to line 14. The fitness values of solutions can 
be computed based on the resultant reference vector, referring to lines 14~16. 

 
Algorithm 2: KRVA(P) 
Input: P 
Output: fit 
1: 𝑓𝑓𝑓𝑓𝑓𝑓 ← ∅ 
2: Compute the ideal point and nadir point 
3: Compute the extreme points and construct W according to (4) 
4: For 𝑋𝑋𝑖𝑖 ∈ {𝑋𝑋𝟏𝟏,𝑋𝑋𝟐𝟐, . . . ,𝑋𝑋𝑵𝑵}do 
5:     𝑇𝑇(𝑋𝑋𝑖𝑖) ← − �𝑊𝑊 × 𝑋𝑋𝑖𝑖� ‖𝑊𝑊‖2⁄  
6: End 
7: 𝑡𝑡 ← 𝑇𝑇(𝑋𝑋1); 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ← 𝑋𝑋1 
8:  For 𝒊𝒊 ← 𝟐𝟐:𝑵𝑵 do  
9:     If 𝒕𝒕 < 𝑻𝑻(𝑋𝑋𝑖𝑖) then 
10:         𝒕𝒕 ← 𝑻𝑻(𝑋𝑋𝒊𝒊) 
11:        𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ← 𝑋𝑋𝑖𝑖 
12:   End 
13:End 
14: Compute the reference vector 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 according to (2) 
14: For 𝑋𝑋𝑖𝑖 ∈ {𝑋𝑋𝟏𝟏,𝑋𝑋𝟐𝟐, . . . ,𝑋𝑋𝑵𝑵} do 
15:     𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑖𝑖) ← 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐹𝐹(𝑋𝑋𝑖𝑖) 
16:End 
 

4.3 Computational complexity 
The computational complexity of MaEA-KRAV is determined by three components, the non-
dominated sorting strategy, variation operation and knee point-based reference vector adaptive 
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adjustment strategy. For the sake of description, this paper utilizes N individuals to optimize a 
MaOP with D decision variables and M objectives. Therefore, the complexity of non-
dominated sorting is 𝑂𝑂(𝑀𝑀𝑀𝑀2)  as the original developers declared[17]. The variation, 
including the simulated binary crossover and polynomial mutation, needs 𝑂𝑂(𝐷𝐷𝐷𝐷) to generate 
N solutions[17]. The computational complexity of the knee point-based reference vector 
adaptive adjustment strategy, as can be seen from Algorithm 2, is 𝑂𝑂(𝑀𝑀𝑀𝑀). Considering all the 
components above, the complexity of MaEA-KRAV is 𝑂𝑂(𝑀𝑀𝑀𝑀2). 

5. Experiments and analyses 
To verify the performance of MaEA-KRAV, subsection 5.1 firstly introduces the employed 
comparison optimizers, as well as benchmarking instances. After that, the experimental 
analyses are presented in subsection 5.2. Subsection 5.3 further tests MaEA-KRAV on 
practical problems. 

5.1 Experimental settings 
This paper employs MOEA/DD[24], KnEA[38], MOMBI-II[40] and NSGA-III[17] as 
comparison optimizers, which are specially tailored for MaOPs. All the parameters of 
comparison optimizers are set according to the original developers. For example, for 
MOEA/DD, the probability of choosing parents locally is set to 0.9. For KnEA, the rate of 
knee points in the population is set to 0.5. For MOMBI-II, the tolerance threshold is set to 
0.001. The benchmarking instances are from WFG test suite[41], where WFG1~WFG8 are 
used. Table 1 summarizes the characteristics of WFG1~WFG8. For each instance, the 
amounts(M) of objectives are set to 8, 10 and 12. Corresponding lengths of variable vector are 
17, 19 and 21, respectively. The used practical problems are MPDMP, which can be found in 
many engineering problems. MPDMP aims to minimize the distances from one solution to the 
vertexes of polygon. For a M-sided polygon, M-dimensional MPDMP can be formulated 
mathematically. For details of MPDMP, please refer to the original paper[42]. The population 
is set to 120, and the maximum evaluations is 12000. For fair comparisons, each instance run 
20 times. The Friedman test is used to statistically show their differences.  
 

Table 1. Summary of characteristics of WFG instances 
Problem Separability Modality Geometry 

WFG1 Yes Uni Mixed 

WFG2 No Mixed Disconnected 

WFG3 No Uni liner 

WFG4 No Multi Concave 

WFG5 Yes Deceptive Concave 

WFG6 No Uni Concave 

WFG7 Yes Uni Concave 

WFG8 No Uni Concave 

 
IGD[20] and Spread[43] are used as the indicators to measure the performance of optimizers, 

of which the mathematical expressions are presented as (7) and (8), 
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where 𝑑𝑑(𝑋𝑋,𝑃𝑃) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌∈𝑃𝑃,𝑋𝑋≠𝑌𝑌‖𝐹𝐹(𝑋𝑋) − 𝐹𝐹(𝑌𝑌)‖, 𝑑̅𝑑 = 1

|𝑃𝑃|
∑ 𝑑𝑑(𝑋𝑋,𝑃𝑃)𝑋𝑋∈𝑃𝑃  , P is the final non-

dominated set. {𝐸𝐸1,𝐸𝐸2, . . . ,𝐸𝐸𝑀𝑀} are M extreme solutions in the set of Pareto optimal solutions. 

5.2 Experimental analyses 
Table 2 displays the average IGD values of optimizers on WFG test suite, where the best 
values are highlighted in boldface. From Table 2, it can be seen that MaEA-KRAV performs 
the best on WFG4~WFG7 with different amounts of objectives. Besides, MaEA-KRAV also 
gains the most outstanding performance on WFG3 with 8 and 10 objectives and WFG8 with 
10 and 12 objectives. However, MaEA-KRAV loses to KnEA on WFG1 and WFG2 with 8 
and 10 objectives. According to the rankings in the last row, it can be observed that MaEA-
KRAV has the smallest the ranking, indicating that MaEA-KRAV is statistically the best 
optimizer among the five optimizers. Moreover, Fig. 2 further exhibits the convergence curves 
of optimizers on WFG6 with 10 objectives in terms of IGD indicator. From Fig. 2, it can be 
seen that MaEA-KRAV outperforms the comparison optimizers at each generation, which 
empirically illustrates that MaEA-KRAV performs the best during the overall optimization 
process. From Table 2 and Fig. 2, it can be seen that the analysis results match very well, 
illustrating MaEA-KRVA performs consistently the best on WFG test suite. 
 

Table 2. Comparison of IGD values of optimizers on WFG test suite 
Problem M MaEA-KRAV MOEA/DD KnEA MOMBI-II NSGA-III 

WFG1 

8 2.1370e+0 (2.83e-1) 1.8689e+0 (1.21e-3) 1.0370e+0 (3.18e-2) 1.9826e+0 (8.42e-2) 1.2415e+0 (1.83e-1) 

10 3.3027e+0 (1.32e-2) 2.6899e+0 (1.14e-1) 1.1935e+0 (2.16e-3) 1.9345e+0 (5.05e-2) 1.4870e+0 (1.24e-2) 

12 3.8846e+0 (5.54e-2) 2.6366e+0 (4.44e-2) 1.5586e+0 (3.66e-1) 2.3721e+0 (3.50e-1) 1.4639e+0 (1.73e-1) 

WFG2 

8 1.4754e+0 (3.45e-2) 1.5745e+0 (1.96e-2) 1.5215e+0 (4.82e-2) 2.7558e+0 (2.32e-1) 1.2695e+0 (1.38e-2) 

10 2.2061e+0 (2.29e-1) 1.5193e+0 (5.83e-2) 1.3769e+0 (2.47e-2) 4.4109e+0 (9.47e-1) 1.6014e+0 (1.26e-1) 

12 3.2978e+0 (1.80e-1) 1.5317e+0 (1.82e-2) 1.4854e+0 (9.15e-2) 5.6582e+0 (6.82e-2) 1.5190e+0 (7.46e-2) 

WFG3 

8 1.9754e+0 (6.03e-2) 2.3484e+0 (1.72e-1) 1.9919e+0 (1.44e-1) 5.0006e+0 (2.08e-2) 1.2366e+0 (9.35e-2) 

10 2.3553e+0 (2.86e-2) 3.7111e+0 (1.11e-1) 2.9560e+0 (3.79e-1) 7.5999e+0 (1.95e-1) 3.0087e+0 (1.38e-1) 

12 3.1848e+0 (2.84e-1) 4.4575e+0 (1.77e-1) 2.0247e+0 (2.62e-1) 1.0145e+1 (6.36e-2) 3.5335e+0 (9.16e-1) 

WFG4 8 3.4346e+0 (1.25e-1) 3.6507e+0 (2.45e-1) 3.6071e+0 (4.89e-2) 5.3070e+0 (6.04e-1) 3.6484e+0 (1.17e-1) 
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10 5.0572e+0 (9.61e-2) 5.6791e+0 (2.55e-1) 5.5470e+0 (2.76e-2) 9.0837e+0 (1.01e+0) 6.0939e+0 (1.53e-1) 

12 6.8868e+0 (5.56e-2) 7.7443e+0 (1.39e-1) 7.4990e+0 (7.20e-2) 1.3282e+1 (1.11e+0) 7.9959e+0 (1.51e-1) 

WFG5 

8 3.3525e+0 (2.83e-2) 4.0330e+0 (3.68e-1) 3.5617e+0 (7.01e-3) 6.1354e+0 (8.90e-2) 3.5173e+0 (4.86e-4) 

10 5.2051e+0 (5.01e-2) 6.5326e+0 (1.73e-1) 5.4975e+0 (3.31e-2) 1.4478e+1 (6.31e-1) 5.8768e+0 (4.98e-2) 

12 6.6279e+0 (6.28e-2) 9.0303e+0 (5.59e-2) 7.2546e+0 (1.56e-1) 1.8659e+1 (7.21e-1) 7.9022e+0 (9.62e-2) 

WFG6 

8 3.4697e+0 (9.55e-2) 4.2000e+0 (1.38e-1) 3.7721e+0 (5.26e-2) 6.0194e+0 (2.11e-1) 3.5701e+0 (5.51e-3) 

10 5.0103e+0 (2.29e-2) 6.3883e+0 (7.26e-2) 5.7219e+0 (2.53e-1) 6.9552e+0 (2.14e+0) 6.0096e+0 (4.98e-2) 

12 6.9186e+0 (7.31e-2) 8.4522e+0 (9.37e-2) 7.6175e+0 (2.67e-1) 1.3332e+1 (1.40e+0) 8.6722e+0 (9.64e-1) 

WFG7 

8 3.4472e+0 (8.97e-2) 3.6396e+0 (2.01e-1) 3.5639e+0 (2.94e-2) 5.8793e+0 (1.41e-1) 3.5878e+0 (7.89e-3) 

10 5.0707e+0 (9.52e-2) 5.4372e+0 (5.96e-1) 5.4173e+0 (8.27e-2) 7.7492e+0 (5.76e-1) 5.9581e+0 (1.02e-1) 

12 6.8314e+0 (1.43e-1) 7.4902e+0 (6.46e-2) 7.1692e+0 (1.93e-1) 1.3533e+1 (1.11e+0) 7.8352e+0 (1.36e-1) 

WFG8 

8 3.7524e+0 (1.73e-2) 3.4579e+0 (2.81e-2) 3.6754e+0 (1.01e-2) 5.8121e+0 (7.18e-3) 3.9138e+0 (2.57e-1) 

10 5.4747e+0 (5.48e-2) 5.7594e+0 (2.54e-1) 6.3389e+0 (2.77e-2) 8.6485e+0 (6.58e-1) 6.1265e+0 (7.07e-2) 

12 7.2681e+0 (1.03e-1) 7.4517e+0 (1.18e-1) 7.7550e+0 (1.10e+0) 1.5223e+1 (3.61e-1) 7.9333e+0 (7.68e-2) 

Ranking    1.96 3.31 2.08 4.79 2.85 

 

 
Fig. 2. Convergence curve of IGD on WFG6 with 10 objectives 

 
Table 3 shows the average spread values of optimizers. From the experimental results, it 

can be observed that MaEA-KRAV outperforms MOEA/DD, KnEA, MOMBI-II and NSGA-
III on 22 out of 24 functions, and loses to NSGA-III on 8-objective WFG5 and WFG6, 
exhibiting an evident advantage over comparison optimizers. Moreover, the Friedman test 
results in the last row also further confirm the superiority of MaEA-KRAV over other 
optimizers. In addition, Fig. 3 visually shows the Spread values over generations. It still can 
be observed that MaEA-KRAV performs consistently the best as analyzed above at each 
generation, which empirically demonstrates the efficiency of MaEA-KRAV . 
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Table 3. Comparison of Spread values of optimizers on WFG test suite 

Problem M MaEA-KRAV MOEA/DD KnEA MOMBI-II NSGA-III 

WFG1 

8 3.8785e-1 (1.79e-2) 1.2181e+0 (1.14e-2) 7.2952e-1 (1.12e-1) 1.2528e+0 (3.18e-1) 8.7804e-1 (7.12e-2) 

10 3.9943e-1 (8.53e-4) 1.1976e+0 (4.39e-2) 8.1346e-1 (2.31e-2) 1.0488e+0 (5.12e-3) 1.0100e+0 (9.28e-2) 

12 4.0230e-1 (1.27e-2) 1.2366e+0 (4.21e-2) 8.6480e-1 (5.32e-2) 1.0546e+0 (1.66e-2) 9.1683e-1 (1.20e-1) 

WFG2 

8 2.0288e-1 (8.56e-3) 7.2067e-1 (2.96e-2) 5.7105e-1 (3.01e-2) 1.1966e+0 (2.45e-1) 8.7486e-1 (1.27e-1) 

10 2.3917e-1 (5.96e-2) 1.0768e+0 (8.59e-2) 5.5312e-1 (2.22e-2) 1.0219e+0 (6.46e-3) 9.0279e-1 (2.97e-3) 

12 2.7200e-1 (1.65e-2) 1.0156e+0 (3.72e-2) 5.8857e-1 (4.50e-2) 1.0487e+0 (1.85e-2) 9.3512e-1 (1.88e-3) 

WFG3 

8 1.8024e-1 (7.88e-4) 6.6152e-1 (4.70e-2) 3.3381e-1 (3.71e-2) 1.0007e+0 (8.50e-4) 7.7985e-1 (1.31e-2) 

10 1.9133e-1 (2.83e-2) 1.0287e+0 (2.42e-2) 4.5599e-1 (7.12e-2) 1.0011e+0 (9.62e-4) 7.8256e-1 (2.87e-2) 

12 2.3042e-1 (1.79e-2) 1.3974e+0 (1.92e-2) 5.7955e-1 (6.91e-2) 1.0008e+0 (2.17e-4) 7.5785e-1 (8.07e-2) 

WFG4 

8 1.7097e-1 (1.51e-2) 7.9299e-1 (5.12e-1) 4.6026e-1 (4.31e-2) 1.5791e+0 (3.16e-2) 3.5228e-1 (3.15e-1) 

10 1.7774e-1 (9.30e-3) 1.0232e+0 (4.25e-2) 4.9493e-1 (7.35e-2) 1.0598e+0 (3.79e-2) 6.0268e-1 (1.14e-1) 

12 1.8300e-1 (3.57e-3) 1.2153e+0 (8.55e-2) 5.0575e-1 (2.59e-2) 1.1319e+0 (7.33e-2) 5.5319e-1 (1.23e-2) 

WFG5 

8 1.5767e-1 (1.10e-2) 4.1471e-1 (5.06e-2) 3.8005e-1 (1.79e-3) 1.3889e+0 (1.47e-1) 1.4294e-1 (4.89e-4) 

10 1.7679e-1 (1.59e-3) 1.2934e+0 (3.46e-2) 4.6674e-1 (1.25e-3) 1.0099e+0 (7.99e-4) 5.2912e-1 (7.03e-3) 

12 1.8173e-1 (7.77e-3) 6.6453e-1 (5.84e-2) 4.1465e-1 (7.56e-2) 1.0071e+0 (2.25e-3) 5.6625e-1 (1.89e-2) 

WFG6 

8 1.5670e-1 (1.99e-2) 4.1349e-1 (2.87e-2) 6.0319e-1 (2.73e-2) 1.4093e+0 (3.15e-2) 1.4692e-1 (2.51e-2) 

10 1.6310e-1 (2.62e-3) 1.3500e+0 (1.45e-1) 6.5269e-1 (1.24e-3) 9.6312e-1 (1.59e-3) 5.2267e-1 (3.18e-2) 

12 1.9240e-1 (7.17e-3) 7.5748e-1 (1.37e-2) 7.2646e-1 (1.03e-2) 1.0708e+0 (7.09e-2) 7.7445e-1 (3.03e-1) 

WFG7 

8 1.5566e-1 (7.19e-3) 4.9194e-1 (4.75e-2) 4.4232e-1 (3.97e-2) 1.5788e+0 (4.16e-1) 1.6923e-1 (3.51e-3) 

10 1.7437e-1 (3.18e-3) 1.2479e+0 (1.10e-1) 4.7277e-1 (7.33e-3) 1.0113e+0 (1.61e-3) 5.5192e-1 (3.30e-2) 

12 1.8786e-1 (9.24e-3) 1.0444e+0 (3.02e-3) 4.0251e-1 (1.49e-1) 1.0290e+0 (5.12e-3) 8.0942e-1 (1.29e-1) 

WFG8 

8 1.5708e-1 (4.07e-3) 5.1297e-1 (3.59e-2) 7.4373e-1 (3.31e-2) 1.3114e+0 (2.24e-1) 5.8632e-1 (1.13e-1) 

10 1.8029e-1 (1.20e-2) 1.1844e+0 (2.85e-2) 7.2978e-1 (6.28e-2) 1.0512e+0 (2.00e-2) 7.7937e-1 (1.33e-1) 

12 1.8504e-1 (1.46e-2) 9.9879e-1 (2.51e-1) 7.3327e-1 (1.90e-1) 1.0184e+0 (4.10e-3) 7.5740e-1 (1.83e-1) 

Ranking   1.08  4.21  2.33  4.54  2.83  

 
Fig. 4 visually shows the Pareto fronts obtained by optimizers on WFG6 with 10 objectives, 

where the true Pareto front of WFG6 is also included to have distinct comparisons. From Fig. 
4, it is shown that MaEA-KRVA is able to obtain the Pareto fronts similar to the true Pareto 
front of WFG6. On the contrary, the Pareto fronts obtained by MOEA/DD and MOMBI-II 
perform the worst in terms of the convergence and diversity. In addition, both KnEA and 
NSGA-III show better convergence than MOEA/DD and MOMBI-II, but still lose to MaEA-
KRVA in terms of the diversity and uniformity. 
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Fig. 3. Convergence curve of Spread on WFG6 with 10 objectives 
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Fig. 4. Comparisons of Pareto fronts on WFG6 with 10 objectives 

5.3 Application of MaEA-KRVA to MPDMP 
To test the practicability of MaEA-KRVA, this paper further applies MaEA-KRVA to the 
Multi-Point Distance Minimization Problems (MPDMP)[28]. All parameters are set as 
subsection 5.1 explains. The experimental results are presents in Tables 4~5. 
   From Table 4, it can be seen that MaEA-KRAV performs the best on MPDMP with different 
amounts of objectives. Table 5 also shows the similar experimental results as Table 3 shows. 
Further, from the Friedman test results in Table 4 and Table 5, it still can be observed that 
MaEA-KRAV gains the smallest rankings and achieves the most outstanding performance. 
 

Table 4. Comparison of IGD values of optimizers on MPDMP. 
Problem M MaEA-KRAV MOEA/DD KnEA MOMBI-II NSGA-III 

MPDMP 

8 1.4571e-1 (1.16e-3) 6.5529e-1 (6.38e-3) 1.7792e-1 (1.32e-2) 1.2287e+0 (1.95e-2) 2.1455e-1 (6.83e-3) 

10 1.8479e-1 (1.31e-3) 1.0728e+0 (9.56e-2) 2.1342e-1 (6.11e-3) 1.4205e+0 (5.10e-3) 3.7391e-1 (5.04e-3) 

12 1.7957e-1 (3.72e-3) 1.2245e+0 (3.44e-2) 2.1149e-1 (6.42e-3) 1.5631e+0 (1.52e-3) 3.3386e-1 (9.99e-3) 

Ranking    1.00  4.00  2.00  5.00  3.00  

 
Table 5. Comparison of Spread values of optimizers on MPDMP 

Problem M MaEA-KRAV MOEA/DD KnEA MOMBI-II NSGA-III 

MPDMP 

8 1.8946e-1 (3.35e-3)  1.0049e+0 (4.03e-3)  8.6076e-1 (1.03e-1)  1.0009e+0 (1.07e-3)  1.0706e+0 (2.79e-2) 

10 2.0529e-1 (2.57e-2)  1.0252e+0 (1.83e-2)  8.0093e-1 (6.26e-2)  1.0000e+0 (2.03e-6)  1.1642e+0 (2.61e-3) 

12 2.2045e-1 (5.67e-3)  1.0288e+0 (2.78e-2)  9.1185e-1 (6.85e-2)  1.0000e+0 (3.10e-5)  1.1376e+0 (2.16e-2) 

Ranking   1.00  3.83  2.00  3.17  5.00  

6. Conclusion 
General methods for the adaptive adjustment of reference or weight vectors can only ensure 
the distribution of solutions as much as possible. Differently, this paper proposes to utilize 
knee points to adaptively construct reference weight vectors to concurrently balance the 
diversity and convergence. Moreover, this paper further designs the many-objective 
evolutionary algorithm with knee point-based reference vector adaptive adjustment strategy. 
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The extensive experiments and analyses on WFG test suite and MPDMP empirically illustrate 
the efficiency of the proposed method on MaOPs. Further work will be focused on the MaOPs 
with large-scale variables. 
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