기존 적응 표적 탐지 기법의 경우 클러터 특성이 변하는 비 균일 클러터 상황에서는 만족할 만한 탐지성능을 갖지 못한다. 이는 레이다 좌표 공간상으로 변하는 클러터 파라미터를 신호처리 과정에 효과적으로 적용시키지 못함으로 인해 발생한다. 이러한 문제를 해결하기 위해서는 클러터 환경에 따른 적용 알고리즘 선택 및 선택된 알고리즘의 파라미터 추출을 가능하게 하는 클러터 분류기 사용이 요구된다 본 논문은 이러한 목적으로 구현된 클러터 환경 분류기에 대하여 기술한다. Visual C++ 환경에서 구현된 본 환경 분류 소프트웨어에서는 적응신호처리에 필요한 파라미터 값 추출 및 알고리즘 선택이 가능하며, 또한 단계별 알고리즘의 수행 결과도 확인할 수 있다.
In this paper, we propose an adaptive classifier based on uncertainty of features for 3D planar object recognition. First, we investigate the uncertainty of depth information and the feature values of 3D planar object by numerical method. And, we observed that the statistical behavior of feature is dependent on the position and orientation of objects. After that, the approximation of the statistical behavior is executed. Subsequently, the recognition procedure is executed by the adaptive classifier. By computer simulation, we confirmed that the proposed classifier is useful for 3D planar object recognition.
시간이 흐름에 따라 데이터 분포가 변하거나 관심 개념이 달라질 수 있는 스트리밍 데이터 분석에서 개념 변화에 적응해 나갈 수 있는 능력은 점층적 학습 과정에서 매우 중요하다. 이 논문에서는 개념 변화를 가진 스트리밍 데이터에서 적응적 점층적 분류기를 위한 일반화된 프레임워크를 제안한다. 분류기에 의해 예측되는 신뢰도 벡터와 클래스 라벨 벡터 사이의 거리를 이용하여 분류기 성능 패턴을 나타내는 분포를 구성하고 컨셉 변화에 대한 가설 검정을 수행한다. 추정되는 p-값을 이용하여 오래된 데이터에 대한 가중치를 자동으로 조정하여 분류기 업데이트에 이용한다. 제안된 방법을 두 가지 타입의 선형 판별 분류기에 적용한다. 컨셉 변화를 가진 스트리밍 데이터에 대한 실험 결과는 제안하는 적응적 점층적 학습 방법이 점층적 분류기의 예측 정확도를 크게 향상시킴을 입증한다.
본 논문은 주성분분석기법, 퍼지 클러스터링, ANFIS(Adaptive Neuro-Fuzzy Inference System)와 하이브리드 GA(Hybrid Genetic Algorithm)를 이용하여 GA 기반 TSK(Takagi-Sugeno-Kang) 퍼지 분류기를 제안한다. 먼저 구조동정은 주성분분석기법을 이용하여 데이터 성분간의 상관관계가 제거하도록 입력데이터를 변환하고, FCM(Fuzzy c-means) 클러스터링과 ANFIS의 융합을 통해 초기 TSK 퍼지 분류기를 구축한다. 구축된 초기 분류기의 파라미터를 초기집단으로 발생시켜 AGA(Adaptive GA)와 RLSE(Recursive Least Square Estimate)에 의해 파라미터 동정을 수행한다. 이렇게 함으로서 퍼지 클러스터링의 효율적인 입력공간분할로 ANFIS의 문제점을 해결할 수 있고, AGA에 의해 집단의 다양성 유지와 전역적인 최적해의 수렴을 가속화할 수 있다. 마지막으로, 제안된 방법은 Iris 데이터 분류문제에 적용하여 이전의 다른 논문에 비해 좋은 성능을 보임을 알 수 있었다.
This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권11호
/
pp.5592-5609
/
2017
JPEG steganography detection is an active research topic in the field of information hiding due to the wide use of JPEG image in social network, image-sharing websites, and Internet communication, etc. In this paper, a new steganalysis method for content-adaptive JPEG steganography is proposed by integrating the evolutionary feature selection and classifier ensemble selection. First, the whole framework of the proposed steganalysis method is presented and then the characteristic of the proposed method is analyzed. Second, the feature selection method based on genetic algorithm is given and the implement process is described in detail. Third, the method of classifier ensemble selection is proposed based on Pareto evolutionary optimization. The experimental results indicate the proposed steganalysis method can achieve a competitive detection performance by compared with the state-of-the-art steganalysis methods when used for the detection of the latest content-adaptive JPEG steganography algorithms.
An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.
Kim, Moon-Hwan;Jeong, Keun-Ho;Joo, Young-Hoon;Park, Jin-Bae
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2003년도 ICCAS
/
pp.1272-1277
/
2003
This paper presents a method for combining classifier which is constructed by fuzzy and neural network classifiers and uses classifier fusion algorithms and selection algorithms. The input space of combing classifier is divided by the extended hyperbox region proposed in this paper to guarantee non-overlapped data property. To fuse the fuzzy classifier and the neural network classifier, we propose the fusion parameter for the overlapped data. In addition, the adaptive learning algorithm also proposed to maximize classifier performance. Finally, simulation examples are given to illustrate the effectiveness of the method.
In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.
This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.