• Title/Summary/Keyword: Adaptive Application

Search Result 985, Processing Time 0.024 seconds

Intelligent Forging Simulation Techniques and AFDEX (지능적 단조 시뮬레이션 기술과 AFDEX)

  • Joun, M.S.;Lee, M.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.225-229
    • /
    • 2008
  • We present an intelligent forging simulator AFDEX. The intelligent forging simulator is determined by the adaptive and optimal mesh generation technique and many intelligent application-oriented special functions which minimize the user-intervention during forging simulation. Of course, the solution accuracy should be optimized in the intelligent simulation. We have developed AFDEX to meet the requirement on intelligent simulation. Its characteristics are introduced with the help of typical application examples.

  • PDF

How Did South Korean Governments Respond during 2015 MERS Outbreak?: Application of the Adaptive Governance Framework

  • Kim, KyungWoo
    • Journal of Contemporary Eastern Asia
    • /
    • v.16 no.1
    • /
    • pp.69-81
    • /
    • 2017
  • This study examines how South Korean governments responded to the outbreak of Middle East Respiratory Syndrome Coronavirus (MERS) using the adaptive governance framework. As of November 24, 2015, the MERS outbreak in South Korea resulted in the quarantine of about 17,000 people, 186 cases confirmed, and a death of 38. Although the national government had overall responsibility for MERS response, there is no clear understanding of how the ministries, agencies, and subnational governments take an adaptive response to the public health crisis. The paper uses the adaptive governance framework to understand how South Korean governments respond to the unexpected event regarding the following aspects: responsiveness, public learning, scientific learning, and representativeness of the decision mechanisms. The framework helps understand how joint efforts of the national and subnational governments were coordinated to the unexpected conditions. The study highlights the importance of adaptive governance for an effective response to a public-health related extreme event.

The Adaptive-Neuro Control of Robot Manipulator Using DSPs (디지털 시그널 프로세서를 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • 이우송;차보남;김영규;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.573-578
    • /
    • 2002
  • In this paper, it Is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-negro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

The Adaptive-Neuro Control of Robot Manipulator Using DSPs (디지털 시그널 프로세서를 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • Cha, Bo-Ram;Kim, Seong-Il;Lee, Jin;Lee, Chi-U;Han, Seong-Hyeon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.122-127
    • /
    • 2001
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

Vibration Signal Analysis of Running Electric Train using Adaptive Signal Processing (적응신호처리에 의한 주행전기동차의 진동신호해석)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.13-20
    • /
    • 1999
  • The vibration signals of driving parts of electric train are distorted its signal patterns due to the impact components, which occurs when wheel passes rail joints. An elimination method of the impact components is investigated using adaptive signal processing technique in this study The result shows that adaptive interference canceling method seems to be more effective than line enhancement technique. The application of adaptive interference canceling method to the signal measured at bogie shows that the extractions of the signals of driving parts of traction motor, reduction gear, and axle bearing are successful. Therefore, only the signals of bogie, which is the place to attach an accelerometer easily, is sufficient for the fault diagnosis and the safety evaluation of electric train. Also, adaptive interference canceling method can be applicable to evaluate the performance of vibration isolation between bogie and car body and to investigate the characteristics of indoor sound.

  • PDF

A new scheme for discrete implicit adaptive observer and controller (이산형 적응관측자 및 제어기의 새로운 구성)

  • 고명삼;허욱열
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.822-831
    • /
    • 1981
  • Many different schemes of the adaptive observer and controller have been developed for both continuous and discrete systems. In this paper we have presented a new scheme of the reduced order adaptive observer for the single input discrete linear time invariant plant. The output equation of the plant, is transformed into the bilinear form in terms of system parameters and the states of the state variable filters. Using the plant output equation the discrete implicit adaptive observer based on the similar philosophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based on the exponentially weighted least square method. The adaptive model following control system is also constructed according to the proposed observer scheme. The proposed observer and controller are rather than simple structure and have a fast adaptive algorithm, so it may be expected that the scheme is suitable to the practical application of control system design. The effectiveness of the algorithm and structure is illustrated by the computer simulation of a third order system. The simulation results show that the convergence speed is proportinal to the increasing of weighting factor alpha, and that the full order and reduced order observer have similar convergence characteristics.

  • PDF

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

The Robust Control of Robot Manipulator using Adaptive-Neuro Control Method (적응-뉴럴 제어 기법에 의한 로보트 매니퓰레이터의 견실 제어)

  • 차보남;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.262-266
    • /
    • 1995
  • This paper presents a new adaptive-neuro control scheme to control the velocity and position of SCARA robot with parameter uncertainties. The adaptive control of linear system found wiedly in many areas of control application. While techniques for the adaptive control of linear systems have been well-established in the literature, there are a few corresponding techniques for nonlinear systems. In this paper an attempt is made to present a newcontrol scheme for theadaptive control of ponlinear robot based on a feedforward neural network. The proposed approach incorporates a neuro controller used within a reinforcement learning framework, which reduces the problem to one of learning a stochastic approximation of an unknown average error surface Emphasis is focused on the fact that the adaptive-neuro controoler dose not need any input/output information about the controlled system. The simulation result illustrates the effectiveness of the proposed adaptive-neuro control scheme.

  • PDF

Implementation of the Adaptive-Neuro Control of Robot Manipulator Using DSPs(TMS320C50) (DSPs(TMS320C50)를 이용한 로봇 매니퓰레이터의 적응-신경제어기 실현)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.256-261
    • /
    • 2002
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF