• Title/Summary/Keyword: Adaptation to South Korean Society

Search Result 133, Processing Time 0.021 seconds

Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study (생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가)

  • Lee, Chung-Kuen;Kim, Junwhan;Shon, Jiyoung;Yang, Woon-Ho;Yoon, Young-Hwan;Choi, Kyung-Jin;Kim, Kwang-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.207-221
    • /
    • 2012
  • Air temperature in Korea has increased by $1.5^{\circ}C$ over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, $CO_2$ fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, $CO_2$ fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the $CO_2$ fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of $CO_2$ fertilization, which improves weather condition during the grain-filling period.

Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin (울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가)

  • Kim, Eun-Sook;Lee, Bora;Kim, Jaebeom;Cho, Nanghyun;Lim, Jong-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.259-270
    • /
    • 2020
  • Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques-Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5-15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.