• Title/Summary/Keyword: Acute Lung injury

Search Result 219, Processing Time 0.023 seconds

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

Proinflammatory Effects of High Mobility Group B1 (HMGB1) Versus LPS and the Mechanism of IL-8 Promoter Stimulation by HMGB1 (High mobility group B1(HMGB1)과 LPS의 염증유발효과 차이의 비교 및 HMGB1에 의한 IL-8 promoter 자극 기전의 규명)

  • Jeon, Eun Ju;Kwak, Hee Won;Song, Ju Han;Lee, Young Woo;Chung, Jae Woo;Choi, Jae Chul;Shin, Jong Wook;Park, In Won;Choi, Byoung Whui;Kim, Jae Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • Background: High mobility group box 1 (HMGB1) is a novel, late mediator of inflammation. This study compared the pro-inflammatory effects of LPS and HMGB1. The transcriptional factors that play an important role in mediating the HMGB1-induced stimulation of IL-8 were also evaluated. Methods: RAW264.7 cells were stimulated with either LPS (100 ng/ml) or HMGB1 (500 ng/ml). The $TNF-{\alpha}$, MIP-2 and $IL-1{\beta}$ levels in the supernatant were evaluated by ELISA at 0, 2, 4, 8, 12 and 24h after stimulation. An acute lung injury was induced by an injection of LPS (5 mg/kg) or HMGB1 (2.5 mg/kg) into the peritoneum of the Balb/c mice. The lung cytokines and MPO activity were measured at 4h (for LPS) or 24h (for HMGB1) after the injection. The transcriptional factor binding sites for NF-IL6, $NF-{\kappa}B$ and AP-1 in the IL-8 promoter region were artificially mutated. Each mutant was ligated with pIL-6luc and transfected into the RAW264.7 cells. One hour after stimulation with HMGB1 (500 ng/ml), the cell lysate was analyzed for the luciferase activity. Results: The expression of MIP-2, which peaked at 8h with LPS stimulation, increased sequentially until 24h after HMGB1 stimulation. An intraperitoneal injection of HMGB1, which induced a minimal increased in $IL-1{\beta}$ expression, provoked the accumulation of neutrophils the lung. A mutation of AP-1 as well as $NF-{\kappa}B$ in the IL-8 promoter region resulted in a lower luciferase activity after HMGB1 stimulation. Conclusion: The proinflammatory effects of HMGB1, particularly on IL-8, are mediated by both $NF-{\kappa}B$ and AP-1.

Pulmonary Oxalosis Caused by Aspergillus Niger Infection (Aspergillus Niger 감염에 의한 폐옥살산염 1예)

  • Cho, Gye Jung;Ju, Jin Young;Park, Kyung Hwa;Choi, Yoo-Duk;Kim, Kyu Sik;Kim, Yu Il;Kim, Soo-Ok;Lim, Sung-Chul;Kim, Young-Chul;Park, Kyung-Ok;Nam, Jong-Hee;Yoon, Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.516-521
    • /
    • 2003
  • The Aspergillus species produces metabolic products that play a significant role in the destructive processes in the lung. We experienced a case of chronic necrotizing pulmonary aspergillosis caused by an Aspergillus niger infection, which contained numerous calcium oxalate crystals in the necrotic lung tissue. A 46-year-old man, who had a history of pulmonary tuberculosis, presented with high fever, intermittent hemoptysis and pulmonary infiltrations with a cavity indicated by the chest radiograph. Despite being treated with several antibiotics and anti-tuberculosis regimens, the high fever continued. The sputum cultures yielded A. niger repeatedly, and intravenous amphotericin B was then introduced. The pathological specimen obtained by a transbronchial lung biopsy revealed numerous calcium oxalate crystals in a background of acute inflammatory exudates with no identification of the organism. Intravenous amphotericin B was continued at a total dose of 1600 mg, and at that time he was afebrile, although the intermittent hemoptysis continued. On the $63^{rd}$ hospital day, a massive hemoptysis (about 800 mL) developed, which could not be controlled despite embolizing the left bronchial artery. He died of respiratory failure the next day. It is believed that the oxalic acid produced by A. niger was the main cause of the patient's pulmonary injury and the ensuing massive hemoptysis.

The Changes of Physiologic Parameters with Time in Steroid treated-Late Acute Respiratory Distress Syndrome Patients (스테로이드를 투여한 후기 급성호흡곤란증후군 환자에서 시간경과에 따른 생리학적 지표의 변화)

  • Jeon, Ik Soo;Suh, Gee Young;Koh, Won-Jung;Pyun, Yu Jang;Kang, Eun Hae;Ham, Hyoung Suk;Oui, Misook;Chung, Man Pyo;Kim, Hojoong;Kwon, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.4
    • /
    • pp.429-438
    • /
    • 2003
  • Background : The mortality from acute respiratory distress syndrome(ARDS) is >40-50%. Although some prospective trials have failed to demonstrate a survival benefit of steroids in the early stages of ARDS, there are some reports showing some success with steroids in the later stages. This study observed the changes in the physiologic parameters with time in late ARDS patients who were treated with steroids. Methods : The medical charts of 28 intensive care unit patients(male:female=24:4; mean age 64 years), who had been diagnosed with refractory late ARDS ($PaO_2/FIO_2$ <200) and were treated with corticosteroids from December 1999 to July 2002, were retrospectively reviewed. The patients were divided into two groups: the weaned group(n=14), which included the patients who had been successfully weaned from a ventilator after corticosteroid therapy, and the failed group(n=14), which included the patients who had failed weaning. The physiologic parameters included the $PaO_2/FIO_2$ ratio, the positive end-expiratory pressure(PEEP) level, the $PaCO_2$, compliance, the sequential organ failure assessment(SOFA) score, the acute physiologic and the chronic health evaluation(APACHE) II score, and the Murray Lung Injury Score(LIS) in the two groups were compared from the day of mechanical ventilation(Dmv) to 7 days after the corticosteroid therapy. Results : There was no significant difference in the clinical characteristics and the physiologic parameters between the two groups prior to the corticosteroid therapy except for the SOFA score at Dmv(weaned group : $6.6{\pm}2.5$ vs failed group : $8.8{\pm}2.9$, p=0.047). However, within 7 days after corticosteroid therapy, there was significant improvement in the $PaO_2/FIO_2$ ratio, the PEEP level, the $PaCO_2$, the SOFA score, the APACHE II score, and the LIS of the weaned group compared to the failed group. Conclusions : During corticosteroid therapy in late ARDS, the continuation of corticosteroid therapy should be determined carefully in patients who do not show improvement in their physiologic parameters by day 7.

Ficus vasculosa Wall. ex Miq. Inhibits the LPS-Induced Inflammation in RAW264.7 Macrophages

  • Ji-Won, Park;Jin-Mi, Park;Sangmi, Eum;Jung Hee, Kim;Jae Hoon, Oh;Jinseon, Choi;Tran The, Bach;Nguyen, Van Sinh;Sangho, Choi;Kyung-Seop, Ahn;Jae-Won, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.574-583
    • /
    • 2022
  • Ficus vasculosa Wall. ex Miq. (FV) has been used as a herbal medicine in Southeast Asia and its antioxidant activity has been shown in previous studies. However, it has not yet been elucidated whether FV exerts anti-inflammatory effects on activated-macrophages. Thus, we aimed to evaluate the ameliorative property of FV methanol extract (FM) on lipopolysaccharide (LPS)-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 macrophages. The experimental results indicated that FM decreased the production of inflammatory mediators (NO/PGE2) and the mRNA/protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. FM also reduced the secretion of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in LPS-stimulated RAW264.7 cells. Results also demonstrated that FM improved inflammatory response in LPS-stimulated A549 airway epithelial cells by inhibiting the production of cytokines, such as IL-1β, IL-6 and TNF-α. In addition, FM suppressed MAPK activation and NF-κB nuclear translocation induced by LPS. FM also upregulated the mRNA/protein expression levels of heme oxygenase-1 and the nuclear translocation of nuclear factor erythroid 2-related factor 2 in RAW264.7 cells. In an experimental animal model of LPS-induced acute lung injury, the increased levels of molecules in bronchoalveolar lavage (BAL) fluid were suppressed by FM administration. Collectively, it was founded that FM has anti-inflammatory properties on activated-macrophages by suppressing inflammatory molecules and regulating the activation of MAPK/NF-κB signaling.

The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis

  • Jiangxin Xu;Xiangliang Huang;Yourong Zhou;Zhifei Xu;Xinjun Cai;Bo Yang;Qiaojun He;Peihua Luo;Hao Yan;Jie Jin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.647-657
    • /
    • 2024
  • Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.

Difference of Short Term Survival in Patients with ARDS According to Responsiveness to Alveolar Recruitment (급성호흡곤란증후군 환자에서 폐포모집술의 반응에 따른 초기 예후의 차이)

  • Kim, Ho Cheol;Cho, Dae Hyun;Kang, Gyoung Woo;Park, Dong Jun;Lee, Jong Deok;Hwang, Young Sil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.3
    • /
    • pp.280-288
    • /
    • 2004
  • Background : Lung protective strategies, using low tidal volume in ARDS, improve survival rate in ARDS. However, low tidal volume ventilation may promote alveolar de-recruitment. Therefore, alveolar recruitment is necessary to maintain arterial oxygenation and to prevent repetitive opening and closure of collapsed alveoli in lung protective strategies. There has been a recent report describing improvement in arterial oxygenation with use of recruitment maneuver. However, impact of recruitment on outcome of ARDS is unknown. We evaluated whether short-term survival difference existed in patients with ARDS, who were performed alveolar recruitment maneuver(ARM) and prone position, according to response of alveolar recruitment or not. Methods : All patients who were diagnosed with ADRS and received mechanical ventilation were included. ARM were sustained inflation($35-45cmH_2O$ CPAP for 30-40 sec.) or increasing level of PEEP. If these methods were ineffective, alveolar recruitment with prone position was done for at least 10 hours. $P_aO_2/FiO_2$(P/F) ratio was determined before and at 0.5 and 2 hours after ARM. We defined a responder if the P/F ratio was increased over 50% of baseline value. We compared 10-days and 30-days survival rate between responders and non-responders. Results : 20 patients(M:F=12:8, $63{\pm}14age$) were included. Among them, 12 patients were responders and 8 patients were non-responders. In responders, P/F ratio was increased from $92{\pm}25mmHg$ to $244{\pm}85mmHg$. In non-responders, P/F ratio increased from $138{\pm}37mmHg$ to $163{\pm}60mmHg$. Among non-responders, P/F ratio was improved over 50% in 2 patients after prone position. Overall, 14 patients were responders after ARM and prone position. The 10-days and 30-days survival rate in responders was significantly higher than in non-responders(86%, 57% in responders and 33%, 0% in non-responders)(p<0.05). There was no significant difference between responders and non-responders in age($71{\pm}11$, $60{\pm}14$), lung injury score($2.8{\pm}0.2$, $2.9{\pm}0.45$), simplified acute physiology score(SAPS) II ($35{\pm}4.6$, $34{\pm}5.7$), positive end-positive pressure level($15.6{\pm}1.9cmH_2O$, $14.5{\pm}2.1cmH_2O$). Conclusion : ARM may improve arterial oxygenation in some patients with ARDS. These responders in patients with ARDS showed significant higher 10-days and 30-days survival rate than non-responders patients with alveolar recruitment.

Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats (흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화)

  • Jang, Won-Chae;Beom, Min-Sun;Jeong, In-Seok;Hong, Young-Ju;Oh, Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.879-890
    • /
    • 2006
  • Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.

The Respiratory and Hemodynamic Effects of Prone Position According to the Level of PEEP in a Dog Acute Lung Injury Model (잡종견 급성폐손상 모델에서 Prone position 시행시 PEEP 수준에 따른 호흡 및 혈류역학적 효과)

  • Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.140-152
    • /
    • 1998
  • Background: Prone position improves oxygenation in patients with ARDS probably by reducing shunt Reduction of shunt in prone position is thought to be effected by lowering of the critical opening pressure (COP) of the dorsal lung because the pleural pressure becomes less positive in prone position compared to supine position. It can then be assumed that prone position would bring about greater improvement in oxygenation when PEEP applied in supine position is just beneath COP than when PEEP is above COP. Hemodynamically, prone position is expected to attenuate the lifting of cardiac fossa induced by PEEP. Based on these backgrounds, we investigated whether the effect of prone position on oxygenation differs in magnitude according to the level of PEEP applied in supine position, and whether impaired cardiac output in supine position by PEEP can be restored in prone position. Methods: In seven mongrel dogs, $PaO_2/F_1O_2$(P/F) was measured in supine position and at prone position 30 min. Cardiac output (CO), stroke volume (SV), pulse rate (PR), and pulmonary artery occlusion pressure (PAOP) were measured in supine position, at prone position 5 min, and at prone position 30 min. After ARDS was established with warmed saline lavage(P/F ratio $134{\pm}72$ mm Hg), inflection point was measured by constant flow method($6.6{\pm}1.4cm$ $H_2O$), and the above variables were measured in supine and prone positions under the application of Low PEEP($5.0{\pm}1.2cm$ $H_2O$), and Optimal PEEP($9.0{\pm}1.2cm$ $H_2O$)(2 cm $H_2O$ below and above the inflection point, respectively) consecutively. Results : P/F ratio in supine position was $195{\pm}112$ mm Hg at Low PEEP and $466{\pm}63$ mm Hg at Optimal PEEP(p=0.003). Net increase of P/F ratio at prone position 30 min, however, was far greater at Low PEEP($205{\pm}90$ mm Hg) than at Optimal PEEP($33{\pm}33$ mm Hg)(p=0.009). Compared to CO in supine position at Optimal PEEP($2.4{\pm}0.5$ L/min), CO in prone improved to $3.4{\pm}0.6$ L/min at prone position 5 min (p=0.0180) and $3.6{\pm}0.7$ L/min at prone position 30 min (p=0.0180). Improvement in CO was attributable to the increase in SV: $14{\pm}2$ ml in supine position, $20{\pm}2$ ml at prone position 5 min (p=0.0180), and $21{\pm}2$ ml at prone position 30 min (p=0.0180), but not to change in PR or PAOP. When the dogs were turned to supine position again, MAP ($92{\pm}23$ mm Hg, p=0.009), CO ($2.4{\pm}0.5$ L/min, p=0.0277) and SV ($14{\pm}1$ ml, p=0.0277) were all decreased compared to prone position 30 min. Conclusion: Prone position in a dog with saline-lavaged acute lung injury appeared to augment the effect of relatively low PEEP on oxygenation, and also attenuate the adverse hemodynamic effect of relatively high PEEP. These findings suggest that a PEEP lower than Optimal PEEP can be adopted in prone position to achieve the goal of alveolar recruitment in ARDS avoiding the hemodynamic complications of a higher PEEP at the same time.

  • PDF

Expression of Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 after Administration of Endotoxin in Diabetic Rats (내독소로 자극된 당뇨 쥐에서 단백분해효소와 그 억제제 발현)

  • Seo, Ki Hyun;Choi, Jae Sung;Na, Joo Ok;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.3
    • /
    • pp.256-264
    • /
    • 2006
  • Background: An acute lung injury(ALI) is characterized by the recruitment, activation, and apoptosis of inflammatory cells, numerous products released by inflammatory cells such as reactive oxygen species, inflammatory mediators, and a variety of proteolytic enzymes. It was reported that bacterial infections in diabetics showed impaired PMN functions such as reduced PMN respiratory burst and decreased microbicidal activity in inflamed tissue. However, the effect of the proteinase - inhibitor (MMP-9 vs TIMP-1) in ALI in diabetics is unclear. This study evaluated the differences in the expression of MMP-9 and TIMP-1 after the stimulation of endotoxin in a rat model. Methods: Six-week-old male Sprague-Dawley rats were classified into normal, DM, LPS and DM+LPS groups. The peripheral blood, BAL fluids, and lung tissues were obtained from individual rats. The MMP-9 activity was measured by gelatin zymography and the TIMP-1 level was measured by Western blotting. Results: The total BAL cells of the DM-LPS groups were significantly lower than the LPS groups (p < 0.01). The MMP-9 activities in the serum were higher in the DM+LPS groups than in the other groups. The MMP-9 activities in the BAL fluids were significantly higher in the DM+LPS group than in the normal and diabetic rats (p < 0.05). TIMP-1 expressions in the BAL fluids were significantly lower in the DM+LPS group than other groups (p < 0.05). The ratio between MMP-9 and TIMP-1 in the BAL fluids was significantly higher in the DM+LPS groups (p < 0.05). Conclusion: In ALI in diabetics the higher MMP-9 activity and lower TIMP-1 level are believed to prolonged and intensify the course of inflammation.