• Title/Summary/Keyword: Actuators

Search Result 1,940, Processing Time 0.029 seconds

KC-100 Full-scale Airframe Static Test (KC-100 전기체 정적 구조시험)

  • Shim, Jae-Yeul;Jung, Keunwan;Lee, Hanyong;Lee, Sang Keun;Hwang, Gui-Chul;Ahn, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • A full-scale static test for a composite structure small aircraft (KC-100) was conducted in the KARI. The test includes 15 full-scale test and 7 local test conditions. Test requirements with test schedule, test article with dummy structures, test load generation, test system, and equipment are introduced for the test. Test load data of the 1st test condition(U1) was analyzed to evaluate an accuracy of load control for the test. The analysis results show that load data obtained during test were within tolerance of Static Null Pacing Error(SNPE) and the error value of load control was 8.6N. The error of load controls for the full-scale static test using dozens of actuators was calculated by a method suggested by authors. Test data for all other test conditions is also shown in this paper. Finally, reactions measured from restraint system of the U1 test condition show that the reaction changes as load increment. The factors which may change the change of reactions for a full-scale static test are introduced in this study.

Analysis of Network Topology for Distributed Control System in Railroad Trains (철도차량용 분산형 제어시스템을 위한 네트워크 토폴로지 분석)

  • Hwang, Hwanwoong;Kim, Jungtai;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.21-29
    • /
    • 2015
  • For higher reliability against component failures in railroad trains with many electronic sensors and actuators, a distributed control system with which all electronic components are connected via a network is being considered. This paper compares and analyzes various topologies of Ethernet network for a railroad train in the aspects of (1) failure recovery, (2) the number of ports per device, (3) the number of cable connections between vehicles, and (4) performance. Especially, the unique characteristic of a train system that the number of vehicles changes is considered through analysis. Various combinations of in- and inter-vehicle topologies are considered. In addition, we introduce a hybrid of star and daisy-chain topology for inter-vehicle connection when the maximum number of inter-vehicle connections is limited to reduce possible failures of inter-vehicle connections. Simulation results show performance comparison between different topology combinations; the hybrid topology is shown to enhance delay performance even with a highly limited number of inter-vehicle connections.

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Effect of CuO Additions on Microstructures and Piezoelectric Properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ Ceramics (CuO 첨가에 따른 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ 세라믹스의 압전특성과 미세조직의 변화)

  • Jeon, So-Hyun;Kim, Min-Soo;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.194-194
    • /
    • 2008
  • Lead oxide based ceramics, represented by PZT, are the most widely used materials for piezoelectric actuators, sensors, and transducers due to their excellent piezoelectric properties. In particular, high-performance multilayered piezoelectric ceramics for advanced electronic components have drawn great attention. In order to develop piezoelectric ceramics capable of being sintered at low temperature for multilayer piezoelectric device applications, the effect of CuO additions on the microstructures and electromechanical properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ ceramics was investigated. The samples with CuO addition were synthesized by ordinary sintering technique. X-ray diffractions indicated that all samples formed a single phase perovskite structure. The addition of CuO improved the sinterability of the samples and caused an increase in the density and grain size at low temperature. The optimum sintering temperature was lowered by CuO additions. Excellent piezoelectric and electromechanical responses, $d_{33}$ ~ 663 pC/N, $k_p$ ~ 0.72, were obtained for the samples of high density with 0.1 wt% CuO addition sintered at $1050^{\circ}C$ for 4 h in air. These results show that the piezoelectric properties of PMNZT ceramics can be improved by controlling the microstructure and this system is potentially a good candidate as multilayer piezoelectric device for a wide range of electro-mechanical transducer applications.

  • PDF

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Experiments of Micro Jet Injection for Bio-Medical Application (바이오 분야 적용을 위한 마이크로 젯 인젝션 실험)

  • Ham, Young-Bog;An, Byeung-Cheol;Trimzi, Mojiz Abbas;Kim, Jong-Dae;Lee, Gi-Tae;park, Jung-Ho;Yun, So-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.681-687
    • /
    • 2016
  • It is essential for micro jet injectors in the biomedical sector to operate under high pressure. High pressure injection, however, is accompanied by high volumes. On/Off valves that can be operated at high speeds have been used to address this problem. In this research, piezoelectric actuators which have a response frequency of the order of hundreds of kilohertz were used as the On/Off valve and experiments were applied. Researchers developed a controller to precisely manipulate the piezoelectric valve with various waveforms. They also fabricated five types of nozzles to consider the effect of nozzle type on injection. This allowed researchers to manipulate and confirm factors that can affect the injection volume and force. Results of this experiment have shown how to decrease the injection volume and increase the injection force. and it is predicted that the optimized injection volume and force value can be determined depending on the skin type.

Study on Estimation of Design Factors for 6 Degree-of-Freedom Simulator (6자유도 시뮬레이터의 설계인자 추정에 관한 연구)

  • Yoon, Jun-Seok;Song, Woo-Jin;Byun, Young-Seop;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.447-456
    • /
    • 2010
  • The application of a reliable motion simulator can contribute effectively in the evaluation of the performance of a vehicle platform in the development stage of a small unmanned aerial vehicle (UAV). Therefore, the research on a reliable motion simulator can accelerate the development of UAV and decrease the relevant cost. In this paper, the design factors considered in the preliminary design stage of a 6 degree-of freedom motion simulator are defined and the motion range of the simulator is described on the basis of these design factors. The length, acceleration, and the required thrust of actuators with respect to the motion simulator under development are also predicted. The motion range can be increased and a suitable actuator can be selected and produced by applying these results in the manufacturing process of the motion simulator. Thus, the reliability of the motion simulators can be achieved during the actual design operation of the UAV.

A Study on the Control Algorithm for Active Walking Aids by Using Torque Estimation (모터 토크 추정을 통한 능동형 보행보조기의 차량 제어 알고리즘 구현)

  • Kong, Jung-Shik;Lee, Bo-Hee;Lee, Eung-Hyuk;Choi, Heung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.181-188
    • /
    • 2010
  • This paper presents the control algorithm of active walking aids estimating external torque of the wheels from user's will. Nowadays, interest of the walking aids is increased according to the increase in population of elder and handicapped person. Although many walking aids are developed, most of walking aids don't have any actuators for its movement. However, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to precision control of walking will during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose control algorithm of walking aids by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Finally, walking aids are controlled by these data. Here, all the processes are verified by simulation.

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis (수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구)

  • Shin, Jin Young;Kim, Hyung-Jin;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.753-760
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.