• Title/Summary/Keyword: Actuator fault

Search Result 120, Processing Time 0.033 seconds

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Development of De-orbiter using Drag-sail (가항력돛을 이용한 궤도이탈장치 개발)

  • Choi, Junwoo;Kim, Si-on;Lee, Joowan;Yun, Tae-gook;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, we design and fabricate a de-orbiter using drag-sail and evaluate deployment characteristics. Without employing an actuator to deploy, the de-orbiter is activated by the SMA wire based the release mechanism and driven by the restoring force of the tape-spring. For efficient storage and deployment of drag-sail, an origami method of original ISO flasher is chosen and low priced mylar film is used as the material of the drag-sail. In addition, through the fault tree analysis method which is one of the one-shot device reliability evaluation methods, we confirm the reliability of the de-orbiter(0.997572) and the Roller failure has the highest criticality. Finally, we find feasibility of the proposed de-orbiter through the deployment demonstration of drag-sail.

Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution (최적 요모멘트 분배 방법을 이용한 고장 안전 통합 섀시 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

An Estimation of Modeling Uncertainty for a Mechanical System in Actuators and Links in a Rigid Manipulator Using Control Theory (시스템 모델링의 불확실성 추정과 보상)

  • Park, Rai-Wung;Cho, Sul
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.396-410
    • /
    • 2009
  • The goal of this work is to present an advanced method of an estimation of the Modeling Uncertainties coming up in industrial rigid robot's manipulator and actuators. First, with the given physical robot model, the motion equation was derived. Considering a fictitious model, a new extended motion equation is developed. Based on this extended model, an observer and observer bank are designed for the estimation of modeling uncertainties which are involving the effects of gravity, friction, mass unbalance, and Coriolis which show the nonlinear characteristics in operation states.

A Risk Analysis on the Error Code of Vehicle Inspection Utilizing Portfolio Analysis (Portfolio 분석을 활용한 자동차 검사의 부적합항목에 대한 위험도분석)

  • Choi, Kyung-Im;Kim, Tae-Ho;Lee, Soo-Il
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.121-127
    • /
    • 2012
  • Vehicle Inspection System is to examine the condition of vehicle regularly at the national level to protect lives and properties of the people from traffic accidents due to vehicle's fault. However, the vehicle inspection method, criteria, period and effectiveness have become a controversial issue, because of examining safety management of vehicle by drivers regardless of regular vehicle inspection. Therefore, the aim of this study is to investigate vehicle inspection timeliness and risk level of inspection items through basic statistical survey and portfolio analysis. The results of the research through practical analysis are: (1) The inspection failure rates between 3 and 6 model year tend to increase. (2) The failure of inspection items for safety highly impacts on traffic accident rate in terms of accident risks. (3) According to the result of portfolio analysis, faulty items located 1st quadrant are riding device, driveline system, controlling device, steering actuator, and fuel system.

Fault Diagnosis for High Pressure Turbine Valve using Fuzzy Logic (퍼지 논리를 이용한 원자력 발전소 고압터빈 밸브 고장진단)

  • Kim Yeon-Tae;Jeong Byeong-Uk;Baek Gyeong-Dong;Kim Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.79-82
    • /
    • 2006
  • 본 논문은 원자력 발전소의 주요 제어계통 중에서 터빈 조속기 제어계통에 관련한 성능평가를 목적으로 한다. 터빈 조속기 계통은 고압의 유압계통으로 구성되어 있어 구동설비가 복잡하다. 복잡한 기계설비는 운전 중 많은 오동작에 의한 고장을 일으키고, 유지보수에 어려움이 있다. 이러한 복잡한 기계설비에 있어 운전원에 의한 기계성능 평가는 불리한 점이 많다. 예를 들어 서로 다른 시간에서 일어나는 같은 상황에 대해 다른 판단을 내릴 수 있다는 점이다. 터빈 조속기 계통의 기계설비에 있어서 터빈 밸브 유압공급 및 구동장치는 각 터빈벨브 자체에 부착되어 있어 터빈벨브를 동작시킨다. 터빈벨브들은 구동기 유압 서보실린더(Actuator Hydraulic Servo Cylinder)에 의해 열리고 압축된 스프링에 의해 닫힌다. 이러한 시스템을 진단하기 위해서 본 논문에서는 밸브의 내부 압력의 특징정보를 입력으로 하는 퍼지이론을 적용하여 터빈 밸브 구동설비의 성능을 판단하고자 한다. 퍼지이론에 적용하기위해 터빈 조속기 제어계통의 고압 터빈 조절 벨브와 고압 터빈 정지 밸브의 압력변화 데이터를 이용한다. 퍼지이론의 적용과정에서 퍼지 Rule은 실제 운전원이 압력변화 데이터에 대한 판단기준을 근거로 하여 정하기로 한다. 그리고 퍼지이론에 적용한 결과를 분석하고 실제 터빈 조속기 계통의 전문가가 판단 결과와 비교하였다.

  • PDF

A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade (풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험)

  • Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan;Chi, Su Chung;Nam, Mun Ho
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

Manufacture & Launch of Small PE/$LN_2O$ Hybrid Rocket with 50 kgf Thrust Level (추력 50 kgf 급 PE/$LN_2O$ 소형 하이브리드 로켓 제작 및 시험발사)

  • Kim, Hyeon-Woo;Jeon, Min-Ho;Oh, Ji-Sung;Han, See-Hee;Kang, Min-Seok;Jang, Hyoung-Gui;Kim, Hee-Yong;Bae, Tae-Hyun;Lee, Sun-Jae;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.507-510
    • /
    • 2009
  • The small size of hybrid rocket using PE-$LN_2O$ was designed, constructed and launched for a development basic technology of Hybrid rocket vehicle. The hybrid engine ignition system was designed with valve system using external actuator and confirmed working without any fault. To design fuel grain an internal ballistics design was carried out, and to estimate rockets flight path an external ballistics analysis was carried out. So the rocket was designed and constructed, and the launch test proves that hybrid rocket's design was suitable. The hybrid rocket(weight : 9kg, diameter : 110 mm, height : 1.7 m) was launched successfully. But parachute was deployed on mid-flight and the mission could not finish its purposed flight. Some of problems were found in this activity but next launch vehicle will be improved.

  • PDF

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.