• Title/Summary/Keyword: Actuator Saturation

Search Result 77, Processing Time 0.028 seconds

Tracking control for linear systems with actuator saturation (포화구동기를 갖는 선형시스템의 추종제어)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.53-54
    • /
    • 2007
  • 이 논문에서는 구동기 용량제한을 갖는 선형시스템에 대한 저이득 추종 제어기 설계 문제를 다룬다. 주어진 시스템에 대한 추종 기준입력은 크기와 변화율에 제한을 갖는 시간에 따라 변화하는 일반적인 입력을 고려하며 제어기 설계 과정은 추종성능을 향상시키기 위한 2단계의 시스템 등가변환으로 구성된다. 먼저 제1단계에서는 잘 알려진 SVD(Singular Value Decomposition)의 원리를 활용하여 추종출력과 관련된 상태를 효율적으로 분리한 후 추종에러를 상태방정식 내에 포함하는 제2단계의 시스템 변환을 통하여 추종성능의 향상을 꾀한다. 제안된 추종 제어기의 설계 조건은 모두 LMI 형태로 표현 가능하며 잘 알려진 수치예제를 통하여 제안된 설계 기법의 효용성을 예시한다.

  • PDF

A Study on the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant (발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구)

  • Kwon, Oh-Kyu;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.689-692
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bump less transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

A Study on the Applicability of Structural Vibration Control Algorithm Considering the Performance Limit of Actuator (구동기의 성능 한계를 고려한 구조물의 진동제어 알고리듬의 적용에 관한 연구)

  • 임채욱;정태영;문석준;김광준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.25-36
    • /
    • 2000
  • 본 논문에서는 구조물이 과도한 기진력을 받을 때에 구조물의 진동 제어를 위하여 제안 되어진 여러 가지 포화 제어 알고리듬들의 유용성을 실제적인 관점에서 살펴보았다 제안된 포화 제어 알고리듬 중세서 수정된 뱅뱅 제어 알고리듬이 매우 유용한 것임을 확인할 수 있었으나 이는 제어력 파형 결정 파라미터의 어떤 범위내에서만 효과적이며 그 범위를 넘어서는 경우에 있어서는 제어기를 불안정하게 할 수 있음을 확인할 수 있었다 따라서 수정된 뱅뱅 제어 알고리듬의 적용시에 과도한 외부 기진력에 대하여 제어기의 안정적인 작동에 의한 구조물의 진동제어효과를 얻기 위해서 제어력 파형 파라미터를 과도 기진력의 크기에 따라 변화시키는 적응형의 방법을 제안하였고 이의 유용성을 수치실험 및 유압식 질량 감쇠기를 장착한 축소 구조물 검증 실험을 통하여 확인하였다.

  • PDF

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

[ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

A Study en the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant (발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구)

  • Kwon, Oh-Kyu;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.369-372
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bumpless transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

A Teleoperated Bilateral Control System for Heavy Duty Tasks

  • S.H. Ahn;Kim, S.H.;D.H. Hong;J.S. Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.2-155
    • /
    • 2001
  • A heavy duty power manipulator consisting of high reduction ratio joints is usually used in heavy duty tasks. When the heavy duty power manipulator is used as the slave manipulator in the teleoperated bilateral control system, the position control performance of the slave manipulator and the system stability tend to deteriorate due to the windup phenomenon caused by actuator saturation. KAERI has developed a teleoperated bilateral control system for the study of the remote handling of a spent fuel mockup bundle, which has an enhanced bilateral control algorithm improving the position tracking performance of the slave manipulator while compensating for the windup phenomenon. In this paper, the developed bilateral control system ...

  • PDF

Handling Deflection Limit in Open-Loop-Onset-Point PIO Analysis (Open-Loop-Onset-Point PIO 해석의 변위한계)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • A new treatment is proposed to handle a deflection limit in the open-loop-onset-point (OLOP), which is commonly used in the prediction of pilot in-the-loop oscillation (PIO) due to a rate saturation. The new approach is motivated by the frequency response of a stand-alone actuator in that, unlike the suggestion by the original OLOP procedure, the rate limit onset is not delayed to a higher frequency by a deflection limit. Indeed, if a feedback control loop is closed, the rate limit onset can be shifted to a lower frequency since the controller tends to react with larger commands when deflection limited. The amplitude of the command at this onset frequency is combined with the deflection limit to estimate the associated gain reduction in the open-loop-onset-point in the final step of the OLOP process. The comparison of the new approach with the previous method reveals that an inaccurate optimism which can occur in the previous method is corrected by the proposed treatment.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.