• Title/Summary/Keyword: Actuator Pump

Search Result 119, Processing Time 0.022 seconds

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

A Haptic Mouse for an Immersive Interface (몰입형 인터페이스를 위한 햅틱 마우스)

  • Kim, Da-Hye;Cho, Seong-Man;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1210-1220
    • /
    • 2011
  • In this paper, we suggest a haptic mouse system as an immersive interface between virtual environment and a human operator. The proposed haptic mouse creates vibrotacitle and thermal sensation to increase the immersion. The vibrotactile module is composed of eccentric motors and a solenoid actuator, and the thermal module consists of a thin-film resistance temperature detector and a Peltier thermoelectric heat pump. In order to evaluate the proposed haptic mouse system, we develop a simple racing game and conduct an experiment. The result of the experiment shows that the proposed haptic mouse system can improve the sense of reality in virtual environment and can be used as an effective interface between virtual environment and a human operator.

Electrowetting of a droplet under an AC Electric Fields (교류전압 하에서의 액적의 전기습윤현상)

  • Hong, Jin-Seok;Ko, Sung-Hee;Kang, Kwan-Hyung;Kang, In-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-176
    • /
    • 2006
  • Electrowetting is prevailing for its various applicability on lap-on-a-chip, and MEMS devices, such as a pump, lens, micro-actuator in the micro-TAS technology. In the usual electrowetting, an AC power is preferred to DC practically. The AC electric field delays the contact angle-saturation, decreases the hysterisis, and is more stable in the view point of dielectric strength. But researches for AC electric field on electrowetting have not been reported very much yet. The different effect of AC on the electrowetting system, especially the effect of a frequency needs to be understood more concretely. In this work, the usual system for electrowetting, water droplet on the dielectric coated electrode (EWOD) is analyzed. Experimental study on the response of contact angles on input frequencies is performed. The simple circuit-model for EWOD system is considered to explain the experimental results. For more concrete understanding, the system is analyzed numerically, where simple AC-conduction model is used. Wetting tensions are analyzed under various input frequency to excavate the experimental results for the responses of the system on input frequencies.

  • PDF

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

Research on Development of a Wide Range Velocity Control Method of Small Size DC Motor for Portable Drug Delivery System

  • Lee, Dong-Joon;Lim, Yang-Ho;Kim, Jang-Hwan;Shin, Chan-Soo;Kim, Hee-Chan;Choi, Soo-Bong;Lee, Hong-Gyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.22-24
    • /
    • 1996
  • Small size DC motor control method for portable drug delivery system has been developed to be used for the actuator of insulins pump. The control method gives the controllabilities both in high speed(40-50 revolution per second(rps)) DC motor drive and also in low speed(0.5-1rps). In low speed mode DC motor is controlled to act like stepping motor and in high speed to optimize power consumption. To control both mode modified bang bang control is suggested. Using this method small size DC motor(spec.) speed is controlled from 0.2 rps to 50 rps. Experimental setup is developed using micro-processor(PIC16C73, Micro Chips co., USA), motor turns checking circuitry, small size DC motor for pager(SM1012, Samhong co., Korea) and gear box. Results from experiment meet need for vailable load condition which is require for portable drug delivery system.

  • PDF

A Basic Study on a Magnetic Fluid Driven Artificial Heart (자성유체에 의해 구동되는 인공심장에 관한 기초연구)

  • Kim, Dong-Wook;MITAMURA, Yoshinoro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.940-947
    • /
    • 2006
  • A variety of actuators fur an implantable artificial heart have been studied. They, all, however, share the disadvantages of a complicated energy conversion mechanism and of the need to use bearings. A ferrofluidic actuator directly drives magnetic fluids by applying a magnetic field to these fluids; it does not require bearings. In this study, the feasibility of a ferrofluidic actuator for an implantable artificial heart was studied. An way of two Poles of ring solenoids was mounted near the acrylic tube $({\phi}\;7.4mm)$. A rubber sack (volume : $2m{\ell}$ was connected to both ends of the acrylic tube. The sack were encased in a rigid chamber that had inlet and outlet ports. The acrylic tube and the rubber sack were filled with water encased in a rigid chamber magnetic fluid and the iron cylinder were immersed in the water. Two experiment method was conducted. 1) distance between stoppers were 72mm and 2) distance between stoppers were 104mm. A stroke volume was stability and $0.96m{\ell}$ was obtained in the experiment 1 and $1.92m{\ell}$ in the experiment 2. The energy efficiency of Experiment method 2 is about five times than Experiment method 2. A magnetic fluid-driven blood pump could be feasible if the magnetic fluid with high magnetization (3 times yester than the current value) is developed.

  • PDF

Effect of the Design Parameters Change on the Hybrid Dynamometer Braking Performance (혼성동력계에서 주요 설계변수가 제동성능에 미치는 효과분석)

  • Lee, Jong-Hoon;Hwang, Jai-Hyuk;Jeong, Min-Ji;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.981-988
    • /
    • 2016
  • Dynamometer is a device for testing the performance of the brake and it is composed of a test zone, the mechanical inertia zone, the electric motor and the control zone. Hybrid dynamometer is a way to compensate for the loss of mechanical inertia in accordance with the brake operation by using an electric motor to reduce the size of the mechanical inertia with the advantage that can be tested in the relatively small size of the mechanical inertia and low cost. In this paper, design the proper size of hybrid dynamometer in the laboratory level with the space constraints, analysed the effect of critical parameter on the braking performance of hybrid dynamometer such as changing the friction coefficient. With this study, could get the results of guideline to judge the poor friction material by measuring the torque of the electric motor to compensate the energy loss due to a reduced mechanical inertia.

Carbon tip growth by electron beam deposition (전자빔 조사에 의한 탄소상 탐침의 성장)

  • 김성현;최영진
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2003
  • Carbon tips were grown on Si cantilevers by applying an electron beam to them directly with Scanning Electron Microscope. A carbon tip was fabricated by aligning the electron beam directly down the vertical axis of Si cantilever and then irradiating a single spot on the cantilever for a proper time in the dominant atmosphere of residual gases generated by the oil of the diffusion pump. A number of control parameters for SEM, including exposure time, acceleration voltage, emission current, and beam probe current, were allowed to make various aspect ratio feature. The growth of carbon tips was not affected by the surface morphology of substrates. We could acquired the tip whose effective length is 0.5 $\mu\textrm{m}$, bottom diameter is 90 nm and cone half angle $3.5^{\circ}$ The growth technique of the high aspect ratio carbon tips on the tip-free cantilevers is available to reduce the complexities of fabricating sub-micron scale tips on the PZT thin film actuator integrated AFM cantilevers.