• Title/Summary/Keyword: Actuator Disk Model

Search Result 54, Processing Time 0.031 seconds

Mathematical Model of Hard Disk Drive Actuator System (하드디스크 드라이브 액추에이터 시스템의 수학적 모델)

  • Gwon, Sun-Eok;Park, No-Yeol;Kim, Jun-O;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3080-3087
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system the system response data of the finite element analysis or experimental results. The model is base on the Rayleigh-Ritz method to approximate the dynamic response of the actuator system. The basic idea is to use the curve-fit technique to obtain the approximation coefficients. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system of the system are affected somewhat by the structural modification and the change of the material properties, we can use the modified size and dynamic properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

Dynamic Analysis of HDD Air Bearing Sliders using the Mathematical Model of Actuator System (액츄에이터 시스템의 수학적 모델을 이용한 HDD 공기 베어링 슬라이더의 동특성 해석)

  • Kwon, Soon-Eog;Park, No-Yeol;Kim, Jun-O;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.485-491
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system from the system response data of the finite element analysis or experimental results. System response data including the dynamics of the considered system are expressed as the mathematical model. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system are affected somewhat by the structural modification and the change of the dynamic properties, we can use the modified size and material properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

  • PDF

The Performance Estimation of Rotor in Wind Fence by Rotor Analysis Solver based on Actuator Disk Model (Actuator Disk Model 기반의 로터 해석자를 사용한 방풍 구조물 내부의 로터 성능 예측)

  • Kim, Taewoo;Oh, Sejong;Kang, Hee Jung;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.429-439
    • /
    • 2013
  • The purpose of current study is to develop the rotor analysis solver and perform a rotor aerodynamic analysis in the wind fence. To this end, the rotor analysis solver based on actuator disk model was employed. To consider the asymmetric effect of the rotor in the wind fence, the flapping motion analysis was conducted with blade element theory for the effective angle of attack calculation. The validation cases which are the rotor with wall and ground were accomplished by developed solver. The decrease of rotor performance by wind fence was confirmed. The wind fence configuration was suggested which guarantees more than 95% rotor performance compared with the no fence case.

Development of Rotary VCM type Actuator for Small Form Factor Optical Disk Drive (초소형 광디스크 드라이브용 VCM타입 엑추에이터 개선)

  • Woo, Jung-Hyun;Kim, Sa-Ung;Song, Myong-Gyu;Lee, Dong-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.474-478
    • /
    • 2006
  • It is becoming more significant to develop a rotary voice coil motor(VCM) type's actuator for small form factor (SFF) optical disk drive(ODD), as portables are getting more and more popularized nowadays. The actuator which is applicable to small-sized ODD with a compact flash(CF) II card size was developed and fabricated. The experimental results showed that the finite element(FE) model is different from the fabricated model. And so flexible mode frequencies did not satisfy specifications of small-sized ODD, and tuning. Tuning procedures were required to improve dynamic characteristics of the fabricated actuator through finite difference method(FDM). At first, design variables were extracted through parameter study and the tuned FE model was improved by design of experiment(DOE). Consequently, It was confirmed that the improved model was applicable to SFF ODD.

  • PDF

Design of Swing Arm Type's Actuator for Small-sized ODD (초소형 광디스크 드라이브를 위한 스윙암 타입 액추에이터 설계)

  • Oh, Jeseung;Park, Se-June;Lee, Dong-Ju;Jung, Ho-Seop;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.660-666
    • /
    • 2005
  • Recently, the need for subminiature storage systems has increased with the diversification of portable devices. An actuator for small optical disk drives has to satisfy performance requirements such as higher access speed, lower power consumption, and smaller size. In this paper, we proposed the miniaturized rotary type VCM actuator that had an effective focusing mechanism and secured sufficient bandwidth for small form factor (SFF) optical disk drive (ODD). Initial model was designed by electromagnetic (EM) and structural analyses. Such a model was improved using design of experiments (DOE) procedure based on a Blu-ray disk (BD) 1x specifications.

A RANS modelling approach for predicting powering performance of ships in waves

  • Winden, Bjorn;Turnock, Stephen;Hudson, Dominic
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.418-430
    • /
    • 2014
  • In this paper, a modelling technique for simulating self-propelled ships in waves is presented. The flow is modelled using a RANS solver coupled with an actuator disk model for the propeller. The motion of the ship is taken into consideration in the definition of the actuator disk region as well as the advance ratio of the propeller. The RPM of the propeller is controlled using a PID-controller with constraints added on the maximum permissible RPM increase rate. Results are presented for a freely surging model in regular waves with different constraints put on the PID-controller. The described method shows promising results and allows for the studying of several factors relating to self-propulsion. However, more validation data is needed to judge the accuracy of the model.

Dynamic Characterizations of a Piezoelectric Microactuator in Hard Disk Drive (HDD용 압전형 마이크로엑츄에이터의 동특성 규명)

  • Kim, Cheol-Soon;Kim, Kyu-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • To provide model parameters for servo control system design, dynamic characteristics of a piezoelectric microactuator for hard disk drive(HDD) were investigated. At first frequency response characteristics was measured and a second order model was proposed. Here the amplitude dependent dynamic characteristics such as low frequency gain and damping ratio were studied. In addition, the load current and equivalent impedance of the piezoelectric actuator were measured by varying excitation voltage and frequency. At last, the super-harmonic resonance of the piezoelectric actuator was discussed.

  • PDF

Analysis of Shock Mechanism and Actuator Behavior of HDD (내충격성 향상을 위한 HDD Actuator의 거동 연구)

  • 손진승;좌성훈;이행수;홍민표
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.449-454
    • /
    • 2001
  • The shock performance of hard disk drives has been a serious issue for portable computers and AV application HDD. Focusing on the motion of an actuator, we investigated non-operational shock mechanism and studied several parameters that affect the shock performance by experimental analysis. It was found that there are two important factors fort the actuator to endure high shock revel. One is a shock transmissibility and the other is a beating between the arm blade and the suspension. To generalize the shock transmissibility, the concept of shock response spectrum was introduced. The shock response spectrum of the actuator system was obtained experimentally and compared with that of an analytical single degree of freedom model. It was found that there was a good agreement. The first bending natural frequency of the arm blade was found to be the most important factor for the low shock transmissibility. By applying the shock response spectrum and avoiding the beating, we could design an actuator of high shock performance.

  • PDF

Track following control of optical pick-up actuator using PZT (PZT를 이용한 광 정보저장기기용 엑츄에이터의 추적제어)

  • 이우철;양현석;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.664-669
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF

Pivot Nonlinearity in Disk Drive Rotary Actuator : Measurement and Modeling (HDD 회전형구동장치의 피봇비선형성 측정 및 모델링)

  • 박재흥;변용규;장흥성;노광춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.419-424
    • /
    • 1996
  • As track density increases, the effects of nonlinearity in pivot bearing of hard disk drive on the servo performance are becoming more important in considering the range of inertia force and the input torque during settling and tracking mode. Recently, an increasing attention is given to more precise experimental observations and modelings of pivot nonlinearity for achieving higher performance of servo control. In this paper, we propose a new model that shows an improved prediction of the pivot nonlinearity than existing preload-plus-two-slope model at matching simulations and experimental results in both time and frequency domains. Experimental measurements are carried out to validate and identify the specific nonlinearity presents in the pivot bearing when its in fine motion. Using the experimental results new model along with the existing one are characterized and compared for relevancies.

  • PDF