• Title/Summary/Keyword: Actual System Trajectory

Search Result 68, Processing Time 0.03 seconds

A Stability Analysis of a Biped Walking Robot about Balancing Weight (이족 보행로봇의 균형추 형태에 따른 안정성 해석)

  • Noh Kyung-Kon;Kim Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • This paper is concerned with a balancing motion formulation and control of the ZMP (Zero Moment Point) for a biped-walking robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a walking robot which have a prismatic balancing weight is conditionally linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. For a stable gait, stabilization equations of a biped-walking robot are modeled as non-homogeneous second order differential equations for each balancing weight type, and a trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3dimensional graphic simulator is developed to get and calculate the desired ZMP and the actual ZMP. The operating program is developed for a real biped-walking robot IWRⅢ. Walking of 4 steps will be simulated and experimented with a real biped-walking robot. This balancing system will be applied to a biped humanoid robot, which consist legs and upper body, as a future work.

Performance Analysis of GNSS Based Precise Positioning User System According to Driving Condition (위성항법 기반 정밀위치결정 사용자 시스템 주행환경에 따른 성능 분석)

  • Lee, Jung-Hoon;Lee, Sangwoo;Ahn, Jongsun;Im, Sunghyuck;Chun, Sebum;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.515-521
    • /
    • 2019
  • The C-ITS requires the lane level positioning of the vehicle in the land transportation environment, and it is most effective to utilize the global navigation satellite system. In the precision positioning system based on satellite navigation, the evaluation of dynamic environment of lane level positioning performance should be accompanied and the evaluation system configuration should be preceded. In addition, performance analysis must be performed according to various environments that change according to traffic or road conditions in a dynamic environment. In this paper, we describe with the performance of traffic and road environment through the evaluation system of lane positioning precision positioning user system based on satellite navigation system. The numerical performance evaluation was carried out based on the data collected by carrying out the actual driving. The performance evaluation by the actual driving trajectory and driving image comparison was performed to derive and analyse evaluation results of positioning performance according to driving condition.

Test and Evaluation for GNSS based Lane Level Precise Positioning User System (위성항법 기반 차로구분 정밀위치결정 사용자 시스템 시험 평가)

  • Lee, Jung-Hoon;Lee, Sangwoo;Ahn, Jongsun;Im, Sunghyuck;Choi, Yunseong;Jang, Youngsu;Lee, Dongchul;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.566-576
    • /
    • 2018
  • The C-ITS requires the lane level positioning of the vehicle in the land transportation environment, and it is most effective to utilize the GNSS. In the precision positioning system based on satellite navigation, the evaluation of dynamic environment of lane level positioning performance should be accompanied and the evaluation system configuration should be preceded. In this paper, we selected performance indicators, assessment equipment, and reliability of reference equipment for evaluation of precision positioning user systems based on the GNSS. The performance evaluation system described above is applied to a real system, and the performance evaluation tool developed for the evaluation system is described. The numerical performance evaluation was carried out based on the data collected by carrying out the actual testbed driving. The performance evaluation by the actual driving trajectory and driving image comparison was performed to derive and analyse the evaluation results of the vehicle lane level positioning user system.

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters (국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구)

  • Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.

The Kinematic Factors of Physical Motions During Air Pistol Shooting

  • Kim, Min-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the kinematic factors of motion during air pistol shooting. Method: This study aimed to investigate changes in forces during movement and determine the factors that affect changes in force during the first, middle, and last periods of shooting an air pistol. Two ground reaction force systems (force platform), SCATT (a shooting training system), and EMG (electromyogram) to measure the action potentials in the muscles of the upper body were used in this study. Four university air pistol players (age: 19.75 years, height: 175.50 cm, body mass: $69.55{\pm}11.50kg$, career length: $6.25{\pm}6years$) who are training to progress to a higher rank were enrolled. Results: In terms of the actual shooting results, the mean score in the middle section was $42.48{\pm}1.74$ points, higher than those in the first and the last periods when using SCATT. The gunpoint moved 13.48 mm more vertically than horizontally in the target trajectory. With respect to action potentials of muscles measured using EMG, the highest action potentials during the aiming-shooting segments, in order higher to lower, were seen in the trapezius (intermediate region), trapezius (superior region), deltoid (lateral), and triceps brachii (long head). The action potentials of biceps brachii and brachioradialis turned out to be high during grasping motion, which is a preparatory stage. During the final segment, muscle fatigue appeared in the deltoid (lateral), biceps brachii (long head), brachioradialis, and trapezius (intermediate region). In terms of the ground reaction force, during the first period of shooting, there was a major change in the overall direction (left-right $F_x$, forward-backward $F_y$, vertical $F_z$) of the center of the mass. Conclusion: The development and application of a training program focusing on muscle groups with higher muscle fatigue is required for players to progress to a higher rank. Furthermore, players can improve their records in the first period if they take part in a game after warming up sufficiently before shooting in order to heighten muscle action potentials, and are expected to maintain a consistent shooting motion continuously by restoring psychological stability.

Research on Usability Test for Business Web Site Development using Concurrent Think Aloud Protocol (비즈니스용 웹 사이트 개발에서의 실시간 발성사고법 사용성 테스트 사례 연구)

  • Kim, Jayhoon;Shin, Jaemin;Kim, Jeong Hwan;Lim, Seok Jong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.1-10
    • /
    • 2018
  • The purpose of this study is to provide a cost effective usability test model for business web site development. In this study, we present a usability test model that combines Concurrent Think Aloud, performance measurement, coaching method, and remote test method. Testing target was the consortium website of electronic information joint licensing. Test participants were actual users selected by their task roles and proficiency in different levels. We improved the system by reflecting the results of user test analysis and re-tested usability test again. The result showed that usability of all participants was improved in the aspect of the time required and the complexity of mouse trajectory. It is expected that the usability test model presented in this study can be used to cost-effectively evaluate and analyze business web sites. We suggest that research various usability test model considering the characteristics of websites.

A Study on the Characteristics of Convective Activities related to Atmospheric Stability Index and Thunderstorms over the Naro Space Center (나로우주센터 상공의 대기 안정도지수 및 뇌운관련 대류활동 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1133-1145
    • /
    • 2019
  • Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.